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ABSTRACT
In this paper a first approach for digital media forensics is
presented to determine the used microphones and the envi-
ronments of recorded digital audio samples by using known
audio steganalysis features. Our first evaluation is based on
a limited exemplary test set of 10 different audio reference
signals recorded as mono audio data by four microphones in
10 different rooms with 44.1 kHz sampling rate and 16 bit
quantisation. Note that, of course, a generalisation of the
results cannot be achieved. Motivated by the syntactical
and semantical analysis of information and in particular by
known audio steganalysis approaches, a first set of specific
features are selected for classification to evaluate, whether
this first feature set can support correct classifications. The
idea was mainly driven by the existing steganalysis features
and the question of applicability within a first and limited
test set. In the tests presented in this paper, an inter-device
analysis with different device characteristics is performed
while intra-device evaluations (identical microphone models
of the same manufacturer) are not considered. For classifica-
tion the data mining tool WEKA with K-means as a cluster-
ing and Naive Bayes as a classification technique are applied
with the goal to evaluate their classification in regard to the
classification accuracy on known audio steganalysis features.
Our results show, that for our test set, the used classification
techniques and selected steganalysis features, microphones
can be better classified than environments. These first tests
show promising results but of course are based on a limited
test and training set as well a specific test set generation.
Therefore additional and enhanced features with different
test set generation strategies are necessary to generalise the
findings.
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1. MOTIVATION
Today digital media forensics are becoming of increasing

importance as information is rather communicated digitally
than analogue. Many formats for digital information are
existing while new formats are continuously emerging. Dig-
ital information is easily transformed and newly generated,
which bears novel challenges of assuring the integrity and
authenticity of that information. Digital media facilitate
undetected forgeries and manipulations, and might thereby
encourage criminals. Those threats need to be minimised.
Thus, digital media forensics are established as a conse-
quence of modern digital information technologies and com-
munication systems such as for example the Internet and
VoIP. Motivated from our experiences in steganalysis the
work presented in this paper applies a specific steganalysis
toolset for digital media forensics based on audio data as
digital media. Our goal is to see if and how known features
from the detection of hidden communications can help to
classify the origin of audio streams. The idea is to extract
known statistical features and to evaluate their discrimina-
tive power for microphone and environment classification.
In this first practical evaluations on a small test set only
inter-device evaluations are performed. This paper is a first
but important contribution in the field of detecting forgeries
in digital audio media.

Basically, forensics refers to the posterior detection and
securing of information left behind at a crime scene. Digital
media forensics further includes the assurance of integrity
and authenticity of digital information, which in a digital
world is rather problematic, due to the simple and fast repro-
duction of information and production of manipulations and
forgeries. The focus of forensics is the evaluation of evidence
to localise those manipulations, prove the authenticity and
integrity of information as well as their origin. Considering



digital media, such a proof can be the identification of sen-
sors (devices) a digital information is created with. In this
context, an approach for digital cameras from images based
on the sensor’s noise pattern is presented in [9] and [3]. An
approach for determining the used digitiser tablets based on
handwriting samples is introduced in [15] and further en-
hanced in [14]. An approach for identifying printers based
on greylevel co-occurrence features is presented in [12], while
another approach for the forensic identification of printers
based on SVM techniques is presented in [11]. An overview
of methods for forensic characterisation of devices in given
in [6], where current forensic identification techniques for
RF (radio frequency) devices, printers, and cameras are pre-
sented and examined, and a generalisation for the use with
other devices is introduced. These approaches contain both,
inter- as well as intra-device analysis.

This paper is based on our previous and recent research,
whose fundamental concept is presented in [13]. A so-called
“Verifier-Tuple” is developed in order to be able to struc-
ture and analyse information in detail and extract specific
features for defined information layers. By applying the
“Verifier-Tuple”five different information layers are classified
which include a basic differentiation between syntax and se-
mantic features. Thus, we are able to expose the connection
between the different but interacting layers of information.
Further in regard to digital media forensics, this “Verifier-
Tuple” model enables a user to determine which parts of
information are required in order to correctly derive addi-
tional information, which basically is not directly included
in the available and analysable information - a phenomenon
commonly occurring within forensics.

In this paper we evaluate the applicability of our audio
steganalysis approach from [7] as “Verifier-Tuple” for audio
forensics. This approach was used successful in audio ste-
ganalysis where the embedding for selected audio steganog-
raphy algorithms was detected with up to 100% accuracy
under certain assumptions introduced in [7]. The goal for
the tests performed here was to evaluate whether the same
features leading to good results in steganalysis are also ap-
plicable and useful in the identification of sensors.
So the main idea is that from syntactical audio features ad-
ditional higher level semantical features can be derived up
to microphone and environment classification. Based on this
we propose three hypotheses and evaluate these hypotheses
in the tests presented in this paper:

• Hypothesis I: Is it possible to correctly classify the used
microphone for the generation of a recording?
The evaluations for this hypothesis are split into two
parts: a) for the general classification and b) for the
classification of every single microphone.

• Hypothesis II: Is it possible to correctly classify the
location where a recording was made?
The evaluations for this hypothesis are split into two
parts: a) for the general classification and b) for the
classification of selected single rooms.

• Hypothesis III: Does feature selection (feature reduc-
tion) inprove the classification accuracy?

An exemplary test set of 10 different audio files recorded
for the inter-device classification as mono audio data by four
microphones from different manufacturers in 10 different
rooms with 44.1 kHz sampling rate and 16 bit quantisa-
tion is considered for our evaluations to determine whether
the audio steganalysis features from [7] are useful and rele-
vant for media forensics. Note that these first tests (using
10 ∗ 10 ∗ 4 = 400 audio files a 18.5 seconds = approximately
7400 seconds audio material for evaluation) can only give an
indication since the used test set is relatively small. An gen-
eralisation of the approach is of course still an open question,
since the number of reference files is significantly smaller
than the number of features used in the evaluation, even
when considering the fact that parts of the feature space are
correlated.
All feature computations are done using AAST (AMSL Au-
dio Steganalysis Toolset; version 1.03) [7] with its default
window size of 1024 samples per window. Identical en-
vironmental signals are captured by all microphones due
to the files are recorded syntactically synchronised for all
four microphones at the same time for each room. Regard-
ing the “Verifier-Tuple”, the feature vectors computed from
the recorded audio files are not semantically normalised by
AAST, but syntactically as features are extracted parallel
from a fixed number of windows a 1024 samples on the se-
lected set of audio files.

This paper is structured as follows: In section 2 the feature
computation derived from our audio steganalysis approach
from [7] is briefly introduced and classification strategies are
summarised. In section 3 the test scenario is presented which
includes a description of the test sets, test set-up, test pro-
cedure as well as the precise test objectives. In section 4,
the test results are presented and discussed. Finally, section
5 summarises and concludes the paper and outlines future
work.

2. FEATURE COMPUTATION AND
CLASSIFICATION

To address the three hypotheses identified in section 1, the
AAST and the WEKA [17] data mining software (version
3.4.10) described in [18] are used to provide the feature vec-
tors and results for classification. In the following sections
the feature computation step, which outputs the feature vec-
tors for classification, and the classification approaches used
are explained in detail.

2.1 Feature Computation
The set of 63 statistical features (sfi ∈ FS) computed

by AAST (version 1.03) for windows of the signal (intra-
window) consists of 7 time domain based features and 56
mel-cepstral domain based features. It was decided to use
initially the complete feature set of AAST in the classifica-
tion and then use the feature selection function of WEKA
to evaluate the impact of a reduced feature vector length on
the classification accuracy.
The time domain based features computed by AAST are:
sfev empirical variance, sfcv covariance, sfentropy entropy,
sfLSBrat LSB ratio, sfLSBflip

LSB flipping rate, sfmean

mean of samples in time domain and sfmedian median of
samples in time domain. The computation of these features
is described in detail in [2]. The 56 mel-cepstral domain
based features sfmel1 , ..., sfmelC and sfmelf1

, ..., sfmelfC



(C = 28 for CD-quality audio files) are described in [7]. For
a complete list of the statistical features used see table 1.
All feature computations are done using the default window
size for AAST (1024 samples per window). The maximum
number of windows to be computed for the tests is limited
by the duration of the shortest file in the test set to 800 win-
dows (file length = 18.65 seconds; 18.65s ∗ 44100 frames per
second = 822272 frames; 822272/1024 frames per window
= 803 windows). For a detailed description of the computed
features and the usage of AAST we refer to [7]. The output
feature vectors are not (semantically) normalised by AAST.

2.2 Classification Strategies
Classification is mainly applied in the research field of data

mining and includes techniques for finding unknown pat-
terns in large data sets [4]. Generally and according to the
goal, classification is based on either supervised (classifica-
tion by classifiers) or unsupervised (clustering) techniques.
For classification by classifiers different models such as deci-
sion trees, regression analysis, support vector machines, or
Naive Bayes classifiers can be applied, while each of them
contains different specific algorithms. Most commonly the
data set is separated in two parts: training data set and
testing data set. The first part of the classification process
is training by applying so-called supervised learning algo-
rithms. Based on a set of mutually exclusive and predefined
classes of classified (labelled) data, classifiers are built. As
described in detail in the next section, the Naive Bayes al-
gorithm is one of the most common applied algorithms for
building a classifier. Based on the built classifier, unclas-
sified (unlabelled) testing data gets assigned to a specific
predefined class of the training data by considering the val-
ues of attributes (features) describing the class.
Clustering as the unsupervised classification strategy refers
to the partitioning of data into groups (clusters) while the
data’s group affiliation is not known in advance. In this
context, the data set is not separated. Data belonging to a
group share common or similar traits, which are, for exam-
ple by defined distance measures, determined as proximity.
In the tests performed within this work the applicability
of both techniques are evaluated by analysing and compar-
ing the achieved results using one example classifier (Naive
Bayes) and one clustering algorithm (K-means).

2.2.1 Classification
The Naive Bayes classifiers are a well-researched tech-

nique. They compute classifications using a probabilistic
approach, i.e., they try to compute conditional class proba-
bilities and then predict the most probable class. For a de-
tailed description of the classification process of Naive Bayes
classifiers see [1]. The Naive Bayes classifiers implemented
in WEKA are chosen for this work because of three reasons:

Table 1: All single features sfi in the feature space
FS (C = 28 for audio files with 44.1 kHz sampling
frequency)

domain features
{sfev, sfcv, sfentropy, sfLSBrat ,time domain
sfLSBflip

, sfmean, sfmedian}
{sfmel1 , ..., sfmelC ,

mel-cepstral domain
sfmelf1

, ..., sfmelfC
}

a) The problem at hand is a multi-class classification, which
eliminates many other algorithms (e.g. most decision tree
algorithms and SVM classification) from the set of easily
usable classifiers.
b) They have a very low computational complexity when
compared with other classification algorithms.
c) They did show good results in initial tests on all multi-
class classifiers in WEKA.
In the tests performed the following parameterisations of
WEKA’s Naive Bayes classifier (NaiveBayes) are used: sub-
set generation using percentual split (using the default 66%)
or cross-validation (default 10-fold) with the default random
seed for subset generation.

2.2.2 Clustering
The K-means algorithm [10] is one of basic unsupervised

learning algorithms for solving the clustering problem. The
procedure follows a simple and easy way to classify a given
data set through a certain number of clusters (assume k clus-
ters) fixed a priori. The basic idea is to define k centroids,
one for each cluster. Depending on the initial placement of
these centroids the algorithm will return different clustering
results. The general approach to address this problem is to
place them randomly, but as far away from each other as
possible. The second step after placing the centroids is to
take each point belonging to a given data set and associate
it to the nearest centroid. After all objects have been as-
signed, the positions of the k centroids are recalculated (the
centroids change their location). For the k new centroids
a new binding is computed on the data set points and the
nearest new centroid. Theses steps, except the initial place-
ment, are repeated until the centroids no longer move. Thus
a separation of the objects into groups is achieved and from
it the metric to be minimised can be calculated. Although
it can be proven that the procedure will always terminate,
the K-means algorithm does not necessarily find the most
optimal configuration, corresponding to the global objective
function minimum. The algorithm is significantly sensitive
to the initial placement of the centroids. A tutorial on K-
means Clustering can be found in [5], for a more detailed
description of the algorithm see [10].
In the clustering tests performed in this work, the follow-
ing parameterisations of WEKA’s implementation of the K-
means algorithm (SimpleKMeans) are used: the seed for
the placement of the k centeroids is set to 10 (default), k is
set to the appropriate number of classes for each test. Also
an equal number of samples for each class is ensured. The
K-means clustering algorithm is chosen for the tests because
it did show good results in initial tests on all clustering al-
gorithms in WEKA.

2.2.3 Attribute Selection
To identify single features sfi from the feature space FS

which have a strong impact on the classification process,
WEKA’s attribute selection function is used. The attribute
evaluator chosen for these tests is CfsSubsetEval (evaluat-
ing the quality of a subset of attributes by considering the
individual predictability of each feature as well as the de-
gree of redundancy between them) using BestF irst search
(searches the space of attribute subsets by greedy hill climb-
ing augmented with a backtracking facility [17]). The pa-
rameters for this search are left on their default settings.
This evaluator / search pair is chosen because in initial tests



Table 3: The set of rooms evaluated (R)
Rn Room number Description
R1 29R114 large office
R2 29R131 small office
R3 29R140 bathroom
R4 29R146 laboratory
R5 29R307 lecture hall
R6 audiobox anechoic chamber
R7 outside1 quiet outside environment
R8 outside2 busy parking lot
R9 corridor long and narrow corridor
R10 stairs stone stairwell, strong echo

it resulted in a close match with the result of manual feature
selection. The initial idea for the attribute selection was to
identify all discriminative attributes and discard all others
prior to the classification. The basic assumption for this
idea was that a limitation to those features would improve
the classification accuracy and at the same time reduce the
computational complexity. But it was found in most of the
tests performed that a reduction of the feature set would
lead to a decreasing classification accuracy. Therefore, the
idea to use the attribute selection as a pre-processing step
was discarded and in the rest of the work it is only used to
identify the most significant features for selected tests.

3. TEST SCENARIO
In this section the test sets, the set-up, the test procedure

and the test goals are introduced for the evaluations of the
three test hypotheses defined in section 1.

3.1 Test Sets and Test Set-up
In this section the following test sets are defined in regard

to the practical evaluations: the set of microphones to be
evaluated (see table 2), the set of rooms (R; see table 3)
and the set of test files (see table 4). The following criteria
are applied in the selection of the test sets:
For the set of recording devices a selection of four micro-
phones was randomly chosen from the set of microphones
available at the AMSL (Advanced Multimedia and Secu-
rity Lab of the Department of Computer Science, Otto-von-
Guericke University of Magdeburg, Germany). The number
was limited to four since only four microphone preampli-
fiers have been available for synchronous evaluations. Ta-
ble 2 identifies all microphone and preamplifier combinations
used.

For the set of the Rn ∈ R; n ∈ N, n ∈ {1, 2, ..., 10} a
number of 10 rooms was selected in the building 29 of the
Otto-von-Guericke University of Magdeburg, Germany. The
rooms chosen cover 10 different types of rooms (large and
small office spaces, a bathroom, a noisy laboratory, a lec-
ture hall, an anechoic chamber, a quiet and a busy outside
location, a long and narrow corridor and a stairwell). For
reasons of computational complexity in the tests it was de-
cided to limit the number of rooms to these 10 representative
classes. A complete listing of the rooms with their descrip-
tion is given in table 3.
In the set of the test files a number of 10 files (see table 4)
from the AMSL audio test set described in [8] were chosen.
These 10 files represent ten different classes of audio ma-
terial (music (metal, pop, techno), noise (MLS and white

noise), digital silence, a pure sine at 440Hz, recorded speech
(male and female speaker) and one sample from the SQAM
files (Sound Quality Assessment Material; see [16])). All
material is provided in 44.1 kHz sampling frequency, 16 Bit
quantisation, stereo and PCM coded.
The files are played in every room in R using a notebook
computer and a Yamaha MSP 5 monitor speaker and the
sound was recorded simultaneously by the four microphones
(which were mounted in a fixed position together with the
notebook, the speaker and the used preamplifiers on a trol-
ley to provide mobility for the fixed set-up; recording pa-
rameters: 44.1 kHz sampling frequency, 16 Bit quantisation,
mono and PCM coded). Using this procedure one sound file
for each room, microphone and test file combination was
generated (resulting in 10 ∗ 4 ∗ 10 = 400 recorded files).
The automated playback and recording routine used by the
notebook guarantees that the corresponding files for all four
microphones are synchronous (files are syntactical synchro-
nised; environmental noise is encountered by all microphones
at the same position in the recording).
The same 400 recorded files are used for the evaluations of
hypothesis I (microphone classification) and II (room clas-
sification). In particular for hypothesis I the set of 400 files
is divided into 10 subsets (with 10 files recorded by each
microphone this results for 4 microphones in 40 files over-
all), each subset contains only the signals recorded within
one particular room Rn, n ∈ N, 1 ≤ n ≤ 10. Additional
to the 40 files we add for each room the original reference
files to simulate a 5th, lossless recording, this results in 50
files overall per set. Here we assume that a nearly lossless
recording might be possible, while no similar proposition in
the evaluations for hypothesis II could be found.
For hypothesis II the set of our 400 recorded files is split
into the four microphone subsets of 100 files, each subset
containing only the signals recorded by one of the four mi-
crophones for all rooms. On each of the 14 subsets generated
(10 for hypothesis I and 4 for hypothesis II) a set of feature
vectors is computed using AAST as it is described in sec-
tion 2.1, resulting in a feature vector set for each subset of
audio material.
The Bayesian classification as a supervised classification tech-
nique requires a training set for model generation and a test
set for model evaluation. Here two different modes of this
classifier are used. In the first mode the training and test
set are split by WEKA by the ratio 66% for training and
34% for testing. In the second mode WEKA uses the10-fold
cross-validation. The K-means clustering as unsupervised
technique does not require a set splitting operation.
Note that, of course, a generalisation of the results cannot be
achieved do to the small number of reference audio signals,
which is far smaller than the dimensionality of the feature
vectors computed. Furthermore the approach does not ex-
clude yet the possibility of content dependent classification.
Here we would need independent training and test sets (see
the section on future work).

3.2 Test Procedure and Test Objectives
In the test procedure for hypothesis I concerned with mi-

crophone detection the influence of the room has to be min-
imised. Therefore in the evaluations 10 tests are performed,
i.e. for each of the 10 rooms it is evaluated separately how
good the microphones can be classified using different classi-
fiers and different classifier modes (options). While the room



Table 2: The set of microphones used
Device short name Manufacturer Model Used Pre-Amp.

AKG AKG SE 300 B Millenium Mic 1
Headset TerraTec HeadsetMaster Creative Sound Blaster USB
SM58 Shure SM58 Creative Sound Blaster USB
Tbone T.bone MB45 Millenium Mic 1

Table 4: The set of reference files used
test file genre

Metallica-Fuel.wav music/metal
U2-BeautifulDay.wav music/pop

Scooter-HowMuchIsTheFish.wav music/techno
mls.wav sounds/noise

sine440.wav sounds/noise
white.wav sounds/noise

silence.wav sounds/silence
MariaG-afewboys_nor.wav speech/female

andreas-D2.wav speech/male
vioo10_2_nor.wav sqam/instrumental

Rn is kept constant for each test the five different versions
of each file (the original and the four recordings by the four
microphones) are classified using the Naive Bayes classifier
and clustered using the K-means algorithm.
The test goal for this tests is to determine how precise a
known microphone can be identified using recordings from
a set of known locations. Furthermore, the impact of the
number of feature vectors on the classification is evaluated.
In contrast to the evaluations on hypothesis I, in the tests for
hypothesis II, which is concerned with room detection, the
influence of the used microphones has to be minimised. For
the evaluations for the second test hypothesis four tests have
to be performed, each using exactly one of the four micro-
phones in the test set. In each test the used microphone has
to be constant, while the signals recorded in the 10 rooms
are classified. The goal for this tests is to determine how
precise a known location can be identified using recordings
by a set of known microphones. Here also the impact of the
number of feature vectors on the classification is evaluated.
For hypothesis III the results for both classification strate-
gies chosen (Naive Bayesian classification and K-means clus-
tering) are compared and the relevance of single features
sfi from FS is evaluated. The goal is to identify the im-
pact of feature selection strategies (i.e. the removal of non-
significant features from the feature vector) has on the clas-
sification accuracy.

4. TEST RESULTS
In this section the test goals derived in section 3.2 from

the three test hypotheses are addressed, using the test sets,
the set-up and the test procedure described in section 3.

4.1 Results for the Evaluation of Hypothesis I
In the following the results of the evaluations for hypoth-

esis I a) and b) (“Is it possible to correctly classify the used
microphone for the generation of a recording?”, a) for the
general classification and b) for the classification of every
single microphone) are discussed. These evaluations include
results for the scaling of the classification accuracy with in-

creasing number of feature vectors per file, which is sum-
marised first for the complete set of rooms and then is dis-
cussed exemplary for one room (R1).

4.1.1 Comparison of the Results for Every Room and
a Fixed Number of Vectors Computed per File

The table 5 averages the classification results for all rooms,
a fixed number of feature vectors per file (800) and all cho-
sen classifiers (NaiveBayes with percentual split (66%) and
10-fold cross-validation as well as clustering using K-means)
for the evaluation of hypothesis I a).
For the Bayesian classifiers the results for the microphone
classification are in the range [61.37,75.99%], depending on
the room. Both cases of Bayesian classification show very
similar results in any test case. With 61.37% the lowest ac-
curacy in the Bayesian microphone classification is found in
the case of R1 (which is a large office). Noisy environments
like R4 and R8 (a noisy lab and a busy outside parking
lot) seem to have a positive effect on the classification result
(second and third highest results). The best microphone
classification (with 75.99% accuracy) was achieved on the
material recorded in a small stone stairwell with a strong
echo (R10).
For the clustering using SimpleKMeans the results are in
the range [30.13,43.57%]. These results are lower than the
ones achieved with Bayesian classification but nevertheless
they are still by far better than “guessing” at the result (for
five classes (recordings from the four microphones and the
original data): 20%), therefore they are still considered sig-
nificant within this work. In this case the worst result with
30.13% is computed for the evaluation in R10 (the stair-
well, which was the best case in the Bayesian classifications).
With 41.57% the best result is given for R5 (a large lecture
hall). Since the results for the clustering are generally worse
for the microphone detection than the results for Bayesian
classification, the following discussions on hypothesis I are
limited to the tests performed using Bayesian classification.

Table 9 at the end of the document shows the normalised
confusion matrixes for all microphones, two different num-
bers of vectors computed per file (100 and 800) and the Naive
Bayes classifier (using percentual split (66%) for training
and testing set generation) for the evaluation of hypothesis
I b). The results of the original confusion matrixes have
been normalised to the range [0,1] to provide for a better
comparability. The following facts are gained from the re-
sults displayed in table 9: The AKG microphone shows a
very low classification accuracy when compared to the other
microphones. In only two of the 10 rooms (R3 and R7) it is
above the average classification accuracy identified in table 5
for the case of 800 vectors computed per file. In nine out of
the 10 rooms the largest number of misclassified vectors for
the AKG are classified as SM58 instead. In two cases the
difference between the correctly as AKG classified vectors
and the cases misclassified as SM58 is just 6% (R2 and R5).



Table 5: Average classification results (percentage of correctly classified feature vectors) for all rooms Rn
(numbers of vectors computed per file is 800) and the different classificators applied

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
NaiveBayes; Perc. Split (66%) 61.37 68.84 62.05 73.34 68.25 69.23 69.44 74.76 71.97 75.65

NaiveBayes; 10xCross-Validation 61.76 69.63 62.61 74.38 68.63 69.31 70.29 75.14 72.50 75.99
SimpleKMeans(class) 36.53 34.68 38.07 33.49 41.57 36.97 38.12 43.57 33.39 30.13

The Headset microphone shows generally a very good qual-
ity of classification results. For all 20 evaluations listed in
table 9 it shows results above the average. With results be-
tween 78 and 96% in the case of 800 vectors computed per
file, the Headset can be very reliably identified in all rooms
evaluated. In seven rooms out of the 10 tests for 800 vec-
tors per file the SM58 shows the closest proximity to the
Headset but the minimal distance between the two is 59%.
The SM58 shows a very inhomogeneous behaviour with re-
gard to the classification accuracy. In five out of the 10 tests
for 800 vectors per file the SM58 performs above the aver-
age (R2, R6, R8, R9 and R10). The results for these tests
range from 46 to 91% percent. The closest proximity in the
results are found in seven cases to the Tbone and in three
cases to the Headset (minimum distance here 15%).
The Tbone shows for 800 vectors per file only in one case
an accuracy above the average (R4). Nevertheless it has a
smaller range ([55,86%]) of classification accuracies than the
AKG. In eight cases the closest proximity in the classifica-
tion can be found to the SM58 microphone (closest distance
23%).
In the evaluations for 800 vectors per file the original mate-
rial was in four rooms (R3, R7, R8 and R10) classified with
an accuracy below the average for the corresponding room
as shown in table 5. The strongest numbers of misclassified
vectors were assigned in six cases to the AKG (in five of this
cases with a number of misclassified vectors between 22 and
28%).
When considering in the classification only the number of
vectors falsely classified as originating from original mate-
rial it can also be seen that this number is reduced to about
0% in the case of 800 vectors per file.
Figure 1 shows a histogram of the best classified microphone
per room. In the case of 100 vectors per file in one case two
microphones (Headset and SM58) achieve the same maxi-
mum result (R9 and R10). It figure 1 it can be seen that
the Headset was the microphone detected best.

4.1.2 Scaling of the Classification Accuracy with
Increasing number of Feature Vectors

Table 6 shows exemplary the impact of the scaling of the
number of input feature vectors on the classification accu-
racy for room R1. In the two cases of Bayesian classifica-
tion the increasing of the number of feature vectors per file
results in an increasing classification accuracy on the micro-
phones. The best result is found with 61.76% in the case of
NaiveBayes with 10 fold cross-validation and 800 vectors
per file. As already seen in section 4.1.1 above, both cases of
Bayesian classification (percentual split (66%) and 10 fold
cross-validation) show very similar results.
The results of the clustering using SimpleKMeans are with
a maximum of 40.33% lower than the results from the Bayes-
ian classification but still far higher than a random classi-
fication on five equally distributed classes (which would be

Figure 1: Histogram of the best classified micro-
phones

20%). If their scaling behaviour is evaluated for increasing
numbers of feature vectors used per file they show, in con-
tradiction to the Bayesian classification, no increase in the
classification accuracy.
The other nine rooms show the same behaviour as R1 in the
scaling tests, therefore a detailed description of the results
for each room will be avoided here. The general results for
all rooms are summarised and compared in section 4.1.1.
Concluding the results of the Bayesian classification it can
be stated that, even when in selected cases the tests per-
formed for 100 vectors per file return significantly better re-
sults than for 800 vectors per file (e.g. table 9 the SM58 in
R1), the average results increase with the increasing number
of vectors per file (see table 6).

4.2 The Evaluation of Hypothesis II
In the following the results of the evaluations for hypoth-

esis II a) and b) (“Is it possible to correctly classify the
location where a recording was made?”, a) for the general
classification and b) for the classification of selected single
rooms) are discussed. For hypothesis II b) the Headset mi-
crophone is chosen due to its performance in the evaluations
for hypothesis I.
Table 7 summarises the tests performed for the evaluation
of hypothesis II. In this table the rate of correct classifica-
tiona of all rooms is given for the material recorded by each
microphone. Since a set of 10 rooms is considered here, a
random correct classification of the rooms would occur with
a likelihood of 10%. The results in table 7 are in the range of
[23.97,41.54%] for the Bayes classificators and in the range
of [10.99,26.49%] for the clustering using SimpleKMeans.



Table 6: Classification results (percentage of correctly classified feature vectors) for room R1 for different
numbers of vectors computed per file and the different classificators applied

100 200 300 400 500 600 700 800
NaiveBayes; Perc. Split (66%) 57.29 57.47 58.53 60.25 60.93 60.77 61.50 61.37

NaiveBayes; 10xCross-Validation 54.62 57.44 58.52 59.78 60.33 61.11 61.57 61.76
SimpleKMeans(class) 38.32 36.89 40.33 36.81 37.94 35.94 37.67 36.53

Table 7: Classification results (percentage of correctly classified feature vectors) for all four microphones and
for different numbers of vectors computed per file and the different classificators applied

AKG 100 200 300 400 500 600 700 800
NaiveBayes; Perc. Split (66%) 30.76 23.97 24.42 25.77 25.43 25.23 24.80 26.08

NaiveBayes; 10xCross-Validation 31.59 24.95 24.93 25.09 25.00 25.11 25.56 25.87
SimpleKMeans(class) 23.72 19.55 15.04 13.33 16.22 13.06 16.23 16.59

Headset 100 200 300 400 500 600 700 800
NaiveBayes; Perc. Split (66%) 40.41 34.87 35.63 36.28 36.08 36.31 37.34 37.42

NaiveBayes; 10xCross-Validation 41.54 36.58 35.91 36.08 36.27 36.63 36.95 36.92
SimpleKMeans(class) 24.43 19.69 18.48 19.33 20.13 19.50 22.33 20.70

SM58 100 200 300 400 500 600 700 800
NaiveBayes; Perc. Split (66%) 30.74 27.84 28.68 28.51 28.61 28.54 28.23 28.84

NaiveBayes; 10xCross-Validation 32.23 28.31 28.20 28.35 28.58 28.65 28.77 28.91
SimpleKMeans(class) 26.49 16.13 17.30 16.88 15.90 15.23 15.79 16.43

Tbone 100 200 300 400 500 600 700 800
NaiveBayes; Perc. Split (66%) 37.26 29.44 30.09 29.55 28.95 28.40 29.24 29.26

NaiveBayes; 10xCross-Validation 38.57 31.10 29.78 29.48 29.17 28.98 29.33 29.62
SimpleKMeans(class) 18.30 14.18 12.66 13.72 10.99 12.37 11.29 12.58

When analysing the results for the Bayes classifier in the
evaluations for hypothesis II a) it is obvious that the test
files recorded using the Headset microphone allow for the
most precise classification of the rooms. Here the highest
accuracy of 41.54% (in the case of the Naive Bayes classifier
using 10-fold cross-validation) is found when using 100 fea-
ture vectors from each file. An interesting observation in the
Bayesian tests is the scaling of the accuracy with increasing
number of feature vectors per file. For all tests if the num-
ber of feature vectors considered is increased from 100 to
200 the accuracy drops between 3 and 8%, if the number of
feature vectors considered is increased further, no significant
change in the accuracy can be noticed (i.e. it stays roughly
constant).
The results for the clustering are generally lower than the
results for the Bayes classification. While the best result of
26.49% classification accuracy for the room detection (SM58
with 100 vectors per file) is still considered significant, the
lowest result of 10.99% is very close to “guessing” at the
room. If the scaling of the classification accuracy with the
increasing number of feature vectors per file is evaluated, it
is noticed that in the case of only 100 vectors per file con-
sidered the classification accuracy for all four microphones
is at its maximum. With increasing number of feature vec-
tors the accuracy seems to drop for each microphone to an
average rate about 7 to 10% below the maximum.

When comparing the results for all four microphones in
the evaluations for hypothesis II a) it can be seen that in
case of the Bayes classification the Headset shows generally
the best performance in the room detection. For the cluster-
ing the SM58 shows the best performance. Since the results
for the clustering are generally worse for the room detection
than the results for Bayesian classification, the following dis-

cussions on hypothesis II are limited to the tests performed
using Bayesian classification.

When comparing in the evaluations for hypothesis II b)
the results for one microphone in all 10 rooms for the ex-
ample of Headset with 100 vectors per file and Bayesian
classification using percentual split (see table 8) it can be
seen that the results for a correct classifications (principal
diagonal of the confusion matrix in table 8) are very inho-
mogeneous for the rooms. The results are in the range of
[12,63%] with an average of 40.41%. In seven of the ten cases
the highest classification result is achieved for the room the
recording was made in. In the other tree cases (R5, R6 and
R10) a different room wrongly achieved the highest number
of classifications. From table 8 also rooms showing mutu-
ally similar and dissimilar behaviour can be deduced. An
example for mutually similar rooms is found with R3 and
R7 where on one hand the vectors recorded in R3 are clas-
sified 55% belonging to R3 and 18% belonging to R7 while
on the other hand the vectors recorded in R7 are classified
47% belonging to R7 and 34% belonging to R3. An exam-
ple for a set of dissimilar rooms is composed e.g. by R1 and
R8. There the number of vectors recorded in R1 and falsely
classified as recorded in R8 is equal 0% and vice versa.

Figure 2 shows a histogram of the correct classified rooms
(i.e. the number of correctly classified vectors is larger than
the number attributed to every other room). When com-
paring the results for 100 and 800 vectors per file it seems
that an increase of the number of vectors considered in the
evaluations also increases the number of correctly classified
rooms. The figure 2 shows that only in R2 and R4 the high-
est number of vectors is classified correctly.



Table 8: Normalised confusion matrixes for the Headset microphone, 100 vectors computed per file and the
Naive Bayes classifier using percentual split (66%) for set generation

Headset 100 vectors per file
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 0.63 0.10 0.08 0.04 0.00 0.00 0.15 0.00 0.01 0.00
R2 0.03 0.49 0.01 0.17 0.08 0.05 0.01 0.11 0.04 0.02
R3 0.13 0.08 0.55 0.04 0.00 0.00 0.18 0.00 0.01 0.00
R4 0.00 0.24 0.00 0.52 0.04 0.03 0.00 0.08 0.07 0.02
R5 0.00 0.25 0.00 0.12 0.24 0.13 0.00 0.15 0.07 0.04
R6 0.01 0.40 0.00 0.19 0.05 0.12 0.01 0.13 0.07 0.02
R7 0.14 0.04 0.34 0.00 0.00 0.00 0.47 0.01 0.00 0.00
R8 0.00 0.05 0.00 0.13 0.08 0.03 0.00 0.54 0.13 0.05
R9 0.00 0.07 0.00 0.10 0.17 0.13 0.00 0.20 0.27 0.07
R10 0.00 0.15 0.00 0.09 0.20 0.10 0.00 0.17 0.09 0.19

Figure 2: Histogram of the correct classified rooms

4.3 The Evaluation of Hypothesis III
The results from the Bayesian classifications and the clus-

tering algorithm presented in sections 4.1.1, 4.1.2 and 4.2 do
not only lead to different classification accuracies, they also
show a different scaling behaviour. In the tests performed
here the applied clustering algorithm with its parameterisa-
tion performed in every test worse than the Bayesian classifi-
cation but still better than a“guessing” in the corresponding
tests would perform.
What still needs to be evaluated in the scope hypothesis III
is the impact of a feature selection on the classification ac-
curacy of the selected classification strategies: In the tests
described for R1 in section 4.1.2 the attribute selection func-
tion of WEKA identified the following features sfi as signif-
icant (ordered by importance): sfev, sfentropy, sfLSBflip

,
sfmean, sfmelf1

, sfmelf3
, sfmelf4

, sfmelf8
and sfmel1 for

the tests with 100, 200, 300 and 400 feature vectors per
file and sfev, sfentropy, sfLSBflip

, sfmean, sfmelf1
, sfmelf3

,
sfmelf4

, sfmelf8
for the tests with 500, 600, 700 and 800 fea-

ture vectors computed per file. It seems that the most signif-
icant features remain constant when increasing the data set.
When expanding this evaluation to all rooms the result can
be summarised with the fact that for all Rn the attribute se-

lection function identifies sfev , sfentropy, sfLSBflip
, sfmean

and sfmelf1
as the five most significant features.

If the initial idea of using the attribute selection function
for a reduction of the data set (in terms of features used for
the classification/clustering) then it is noticed that the clas-
sification accuracy is reduced by this operation (e.g. from
57.29 to 50.52% in the case of evaluating hypothesis I with
NaiveBayes with percentual split (66%) in R1 using 100
feature vectors per file, and 38.32 to 29.64% in R1 with
SimpleKMeans using 100 feature vectors per file). In the
tests performed it was noted that every reduction of the fea-
ture space reduces the classification accuracy.
When performing the same analysis on the relevance of sin-
gle features sfi ∈ FS for hypothesis II as done above for
hypothesis I, for the room classification using the AKG
microphone, in the case of 100 feature vectors per file the
most relevant features are identified as: sfev, sfcv, sfentropy,
sfmean and sfmelf2

. If the number of feature vectors per file
increases to 200-400 the number of relevant features drops to
three (sfev, sfentropy and sfmelf22

). For even higher num-
bers of feature vectors per file the set of relevant features
identified by WEKA’s attribute selection function is limited
to sfev and sfmelf22

.
For the room classification using the Headset microphone,
in the case of 100 feature vectors per file the most rele-
vant features are identified as: sfev , sfentropy, sfcv, sfmean,
sfmedian and sfmelf1

. For higher number of feature vectors
per file the list shrinks to: sfev , sfcv, sfmean, sfmedian and
sfmelf1

.
For the room classification using the SM58 microphone, in
the case of 100 feature vectors per file the most relevant fea-
tures are identified as: sfev, sfentropy and sfmelf22

, above
100 features per file this list is reduced to: sfev , sfentropy.
For the room classification using the Tbone microphone, in
the case of 100 feature vectors per file the most relevant fea-
tures are identified as: sfev, sfentropy, sfmelf1

, sfmel2 and
sfmel3 , above 100 features per file this list changes to sfev

and sfmel12 .
Concluding the results for the impact of applying feature
selection, it can be seen, that by increasing the number of
feature vectors the number of features considered relevant
by WEKA’s attribute selection function decreases. All fea-
ture reductions performed within these tests had a negative
impact to the classification accuracy. When comparing the
tests for hypothesis I and II a very strong relevance of the
feature sfev for all tests performed here has to be noted.



5. SUMMARY AND CONCLUSION
The goal of this paper was to present a first practical

evaluation of microphone and environment classification as
an approach for digital audio forensics. The evaluation was
based on an exemplary test set of 10 different audio reference
files synchronously recorded as mono audio data by four mi-
crophones in 10 different rooms with 44.1 kHz sampling rate
and 16 bit quantisation. Motivated by the syntactical and
semantical analysis of information and audio steganalysis,
specific features were selected for classification. These fea-
tures were computed for the introduced set of audio signals
with the number of feature vectors defined by the shortest
file. Our tests focussed on an inter-device analysis consid-
ering different device characteristics. WEKA’s implementa-
tions of K-means clustering and the Naive Bayes classifier
have been applied for classification.

The overall goal of our tests was to evaluate the classifi-
cation performance in regard to the classification accuracy
on known audio steganalysis features. Based on the test hy-
potheses defined in section 1, specific test goals have been
defined in section 3.2. These three test goals are: determine
how precise a known microphone can be identified using au-
dio samples recorded in a set of known locations, determine
how precise a known location can be identified using au-
dio samples recorded by a set of known microphones and
evaluate the impact of feature selection on the classification
accuracies achieved.
Furthermore, the impact of the number of feature vectors
on the classification and the relevance of single features sfi

from FS, are evaluated. Our test results from section 4 can
be summarised as follows:
For the evaluation of hypothesis I, i.e. the classification of the
microphones for all rooms and a fixed number of vectors per
file, the best results for the Bayesian classification (75.99%
Headset microphone) and K-means clustering (41.57%) are
far above the percentage “guessing” the class would return
(20%). Therefore, we consider the evaluations for hypothe-
sis I as successful to that extent that even if an absolutely
correct classification could not be achieved, this first evalua-
tion shows promising results for the used feature set known
from steganalysis.
If the results are evaluated exemplary for one room the scal-
ing of the classification accuracy for the Bayesian classifiers
indicated a linear connection between the number of fea-
ture vectors used from each file for the classification and the
classification accuracy. Here the results of the clustering al-
gorithm seem to be independent of the number of feature
vectors supplied for the tests.

The evaluations for hypothesis II, i.e. the room classifi-
cation, showed less impressive results than the microphone
classification evaluated in hypothesis I. The best result here
was found with 41.54% accuracy in the case of Bayesian clas-
sification, the Headset and 100 vectors computed per file.
The clustering with K-means resulted generally in worse ac-
curacies than Bayes classification (about 15% worse in the
maximum case; SM58 with 100 vectors per file). Neverthe-
less, these tests also lead to results which confirm hypothesis
II. It is not surprising that the microphone identification is
more accurate than the room identification, given that the
filtering effect of a microphone is probably stronger and more
unique than the filtering effect of a room environment. That
both can be detected at greater than random chance show
that even the room identification can be possible in practice.

For hypothesis III the initial idea of using the attribute
selection function for a reduction of the data set (in terms
of the number of single features sfi from FS used for the
classification/clustering) had to be discarded after it was
noticed in the tests that the average classification accuracy
is reduced by removing features which were identified as non-
relevant by WEKA. Summarising the results for hypothesis
III, the achieved results based on the used test sets have
shown that the classifiers have performed best in all tests if
the feature vectors were not reduced by a feature selection
method.

In summary, our results show that for our test sets, the
used classification techniques and selected steganalysis fea-
tures microphones can be better classified than environ-
ments. An generalisation of the approach is of course still
an open question, since the number of reference files is sig-
nificantly smaller than the number of features used in the
evaluation and the training and test set originate from the
same very small set of audio signals.
In regard to the “Verifier-Tuple”, the considered and ex-
tracted features for our tests belong to a particular informa-
tion layer, the executive semantics. It is assumed to achieve
better results when considering additional features of other
information layers or when normalising differently. Addi-
tionally the impact of the context of the audio files (such as
noise, music, etc) on the classification should be evaluated,
because we can not exclude for our tests that the classifica-
tion performance is influenced by pure context features.
Our actual work is concentrated on the enhancement of the
test set by using more microphones and recording more sam-
ples for the tests, considering other training and test set
generation strategies as well as applying other classification
and clustering algorithms. The small size of the test set in
regards to number of rooms, microphones, test files and clas-
sifiers implies a limited significance for the results achieved,
a generalisation based on these results is not possible. Nev-
ertheless these first evaluations demonstrate the applicabil-
ity of the introduced audio steganalysis approach for audio
forensics. An important step for further research is the con-
sideration of other training and test set generation strategies
(e.g. using only silence or white noise in the training of the
classifiers and then classify other signals like music, thereby
decorrelating the training and test sets) which would reduce
the impact of eventual context dependencies and at the same
time allow for a better generalisation of the classification re-
sults. Also interesting would be intra-room classifications in
room identification, when the recordings are made at differ-
ent locations within a room. Finally, it needs to be evalu-
ated whether the proposed approach can be transferred to
other application fields or other media with similar and/or
different features.
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Table 9: Normalised confusion matrixes for all four microphones, two different numbers of vectors computed
per file (100 and 800) and the Naive Bayes classifier using perc. split (66%)

R1 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.27 0.16 0.46 0.03 0.08 0.59 0.20 0.12 0.08 0.00

Headset 0.00 0.83 0.12 0.05 0.00 0.00 0.78 0.19 0.03 0.00

SM58 0.02 0.01 0.86 0.12 0.00 0.00 0.30 0.52 0.18 0.00

Tbone 0.19 0.05 0.51 0.24 0.01 0.05 0.24 0.16 0.55 0.00

Original 0.18 0.07 0.07 0.05 0.63 0.22 0.06 0.04 0.05 0.62

R2 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.27 0.10 0.47 0.08 0.08 0.39 0.13 0.33 0.15 0.00

Headset 0.01 0.94 0.00 0.04 0.00 0.01 0.92 0.05 0.03 0.00

SM58 0.03 0.04 0.80 0.12 0.00 0.01 0.02 0.70 0.27 0.00

Tbone 0.03 0.07 0.09 0.76 0.05 0.04 0.02 0.30 0.64 0.00

Original 0.03 0.01 0.11 0.05 0.80 0.06 0.01 0.08 0.05 0.81

R3 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.32 0.03 0.46 0.10 0.08 0.65 0.12 0.16 0.07 0.00

Headset 0.01 0.84 0.07 0.08 0.00 0.00 0.86 0.12 0.02 0.00

SM58 0.03 0.25 0.53 0.19 0.00 0.01 0.31 0.46 0.22 0.00

Tbone 0.16 0.21 0.37 0.24 0.02 0.08 0.24 0.14 0.53 0.00

Original 0.21 0.09 0.05 0.05 0.61 0.27 0.07 0.04 0.02 0.61

R4 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.61 0.01 0.18 0.17 0.03 0.49 0.01 0.25 0.24 0.00

Headset 0.00 0.91 0.08 0.01 0.00 0.00 0.92 0.07 0.01 0.00

SM58 0.03 0.06 0.62 0.29 0.01 0.09 0.06 0.59 0.26 0.00

Tbone 0.07 0.03 0.10 0.79 0.01 0.05 0.02 0.07 0.86 0.00

Original 0.03 0.01 0.03 0.10 0.84 0.05 0.01 0.03 0.09 0.82

R5 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.28 0.08 0.47 0.11 0.07 0.39 0.11 0.33 0.17 0.00

Headset 0.00 0.96 0.01 0.01 0.02 0.01 0.96 0.02 0.01 0.00

SM58 0.02 0.00 0.80 0.18 0.00 0.01 0.00 0.67 0.32 0.00

Tbone 0.05 0.03 0.11 0.76 0.05 0.04 0.01 0.35 0.60 0.00

Original 0.03 0.01 0.09 0.07 0.80 0.05 0.01 0.08 0.06 0.80

R6 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.45 0.08 0.28 0.12 0.07 0.42 0.09 0.33 0.15 0.00

Headset 0.01 0.94 0.01 0.02 0.02 0.01 0.89 0.06 0.02 0.01

SM58 0.01 0.01 0.81 0.17 0.00 0.01 0.00 0.74 0.25 0.00

Tbone 0.05 0.02 0.12 0.76 0.05 0.02 0.01 0.35 0.62 0.00

Original 0.03 0.01 0.09 0.07 0.79 0.07 0.01 0.08 0.04 0.79

R7 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.57 0.00 0.25 0.11 0.07 0.74 0.03 0.17 0.06 0.00

Headset 0.00 0.87 0.07 0.06 0.00 0.00 0.96 0.03 0.01 0.00

SM58 0.01 0.03 0.84 0.12 0.00 0.00 0.23 0.63 0.14 0.00

Tbone 0.09 0.15 0.40 0.31 0.04 0.05 0.20 0.20 0.56 0.00

Original 0.20 0.08 0.06 0.04 0.62 0.28 0.06 0.03 0.03 0.60

R8 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.45 0.07 0.26 0.17 0.06 0.68 0.06 0.13 0.12 0.00

Headset 0.03 0.94 0.00 0.01 0.01 0.03 0.93 0.02 0.02 0.00

SM58 0.00 0.01 0.89 0.10 0.00 0.00 0.00 0.90 0.10 0.00

Tbone 0.09 0.01 0.50 0.36 0.04 0.03 0.00 0.33 0.63 0.00

Original 0.17 0.01 0.08 0.11 0.63 0.24 0.01 0.07 0.08 0.60

R9 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.39 0.07 0.34 0.15 0.05 0.49 0.08 0.32 0.11 0.00

Headset 0.00 0.99 0.00 0.00 0.00 0.01 0.96 0.01 0.01 0.00

SM58 0.04 0.01 0.80 0.14 0.00 0.02 0.00 0.79 0.18 0.00

Tbone 0.09 0.04 0.20 0.64 0.04 0.06 0.01 0.35 0.58 0.00

Original 0.07 0.02 0.09 0.05 0.77 0.08 0.02 0.08 0.04 0.78

R10 100 vectors per file 800 vectors per file

AKG Headset SM58 Tbone Original AKG Headset SM58 Tbone Original

AKG 0.39 0.06 0.47 0.02 0.06 0.60 0.06 0.29 0.04 0.00

Headset 0.06 0.89 0.00 0.04 0.01 0.04 0.88 0.01 0.06 0.01

SM58 0.04 0.02 0.89 0.05 0.00 0.01 0.01 0.91 0.07 0.00

Tbone 0.08 0.06 0.11 0.71 0.04 0.06 0.03 0.17 0.74 0.00

Original 0.15 0.01 0.08 0.03 0.73 0.23 0.01 0.08 0.04 0.65


