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ABSTRACT 

Information fusion tries to determine the best set of experts in a given problem domain and devise an appropriate 

function that can optimally combine the decisions of the individual experts. Only few systematic approaches to 

information fusion exist so far in the signal processing field of steganalysis.  

Under the basic assumption that steganalysis can be seen as a statistical pattern recognition process like biometrics, a 

state of the art five level information fusion model known from biometrics is transferred to steganalysis as well as 

statistical detectability evaluations for watermarking algorithms and its applicability is evaluated in practical testing.  

The primary test goal for these evaluations is to measure the impact of fusion on the classification accuracy. Therefore a 

match and decision level fusion are performed here for three selected data hiding algorithms (one steganography and 

two watermarking), two feature extractors and five different classifiers. For the test heterogeneous audio test sets are 

used for content independent training and testing. The secondary test goal of this work is to consider the impact of the 

key selection assumption on the accuracy of the classification in steganalysis.  

The results show for the test cases an increase of the classification accuracy for two of the three tested algorithms by 

match level fusions, no gain by decision level fusion and a considerably small impact of the key selection assumption on 

the statistical detectability. 

 

1. MOTIVATION AND INTRODUCTION 
Steganalysis based on statistical models is used to classify digital assets into unmodified objects and objects modified by 

a data hiding algorithm. Some quite mature approaches especially in the image domain not only show high classification 

accuracies (>99%) but also allow for message length estimations. Other domains, like the here considered audio 

steganalysis, have not yet reached the same degree of maturity as their image counterpart.  

The approach presented within this document is focusing with information fusion on a technique so far rather 

uncommon to steganalysis. The goal of using fusion is to improve the quality in steganalysis (measured here in 

classification accuracy) and thereby improve its value as a detection mechanism for hidden embedding of information 

into digital objects, especially in a domain like audio where few reliable detection approaches exist so far. 

In contrast to previous work on fusion in steganalysis (Kharrazi et al.
10

) we focus on the question: How can the 

detection performance (measured in detection accuracy) on selected data hiding algorithms be improved by fusion in 

steganalysis? To address this question we transfer a five level fusion model from the state of the art in biometrics to the 

domain of audio steganalysis with the goal to increase the detection performance (instead of aiming for a stronger 

universality of the steganalysis approach like Kharrazi et al.) and show how the overall steganalysis process would 

benefit from fusion operations on the example of match and decision level fusion. For the practical implementation of 

the fusion a steganalysis approach which has been successfully employed in audio steganalysis
11

 and audio forensics
13

 

in the past is combined with an approach adapted form image steganalysis. Based on this background it can be assumed 

that the results derived in practical testing here can also be transferred back into the field of audio forensics and thereby 

help to establish trust (in terms or authenticity and integrity) in digital objects. 

The primary test goal defined for the evaluations performed here is to measure the impact of fusion on the classification 

accuracy. For the evaluation of this goal a match level and a decision level fusion of the two mentioned steganalysers 

(AAST (AMSL Audio Steganalysis Toolset) and AudioRS) and five different classifiers is performed for three selected 

data hiding algorithms under the hypothesis that a complete file is either “marked” or “unmarked” by an information 

hiding algorithm (binary decision). The secondary test goal is to consider the impact of the key selection assumption on 

the accuracy of the classification in steganalysis. 

 

Both security mechanisms steganalysis and media forensics are of uttermost importance for other IT disciplines like for 

example secure data storage or long term archiving where establishing trust in the authenticity and integrity of 

communication or storage environments, as well the digital objects within these environments, is a necessity for any 

security concept or business model. Hidden channels within an archiving environment pose not only the imminent threat 



of the misuse of such a system for hidden communication but also the potential threat of steganographically inserted 

malicious code
9
 which might later violate e.g. the authenticity or integrity of stored objects. 

To achieve the goal of improving the value of steganalysis as a secure and reliable detection mechanism e.g. for secure 

storage applications this work shows as result of the performed tests for example in match level fusion an increase of the 

classification accuracy for two of the three tested algorithms. Comparing the performance of the five evaluated 

classifiers in the match level fusion performed here, then the AdaBoost and linear logistic regression models seem to 

outperform the SVM, the Bayesian classifier as well as the used decision tree. The results for decision level fusion are 

not able to show any gain on this fusion level, indicating that a late fusion might not be the optimal choice for the used 

steganalysis approaches. Also a considerably small impact of the key selection assumption on the statistical detectability 

of the tested algorithms is shown. Here the tests show only in 16.6% of the non-fusion test cases a significant deviation 

in the results between the two tested key scenarios, all of them either for the decision tree or the logistic regression 

model. No such differences are seen in the fusion tests. 

 

The document is structured as follows: Section 2 describes the used information fusion model, which originates in 

biometrics and is here transferred to steganalysis for the exemplary domain of audio. All five fusion levels and the 

corresponding signal processing steps are introduced briefly. In section 3 the complete test scenario, including the test 

goals, test setup and the procedure for the practical evaluations, is described. Here the subsection containing the test 

setup specifies the choices for: The test sets used, the three data hiding algorithms, feature computation steps and the 

five exemplarily chosen classifiers (with the corresponding output normalisation/weighting strategies). Section 4 

contains the test results from the practical tests and section 5 concludes the document and shows perspectives for future 

work. 

 

2. PATTERN RECOGNITION, STEGANALYSIS AND FUSION 

If using a definition given by Bebis
2
, then pattern recognition is in general the study of how machines can observe 

their environment, learn to distinguish patterns of interest from their background signals and make sound and reasonable 

decisions about categories of the patterns. Therefore the key objectives in pattern recognition are to process the sensed 

data to eliminate noise, hypothesise the models that describe each class population and, given a sensed pattern, choose 

the best-fitting model for the assignment to the class associated with the model. 

From the various main pattern recognition areas
2
 (template matching, statistical pattern recognition, structural pattern 

recognition, syntactic pattern recognition, artificial neuronal networks, etc) the approach of statistical pattern 

recognition is considered here for its application in steganalysis. This approach assumes that the patterns to be 

recognised (here the impact of the data embedding by data hiding algorithms/techniques) are represented in a feature 

space and tries to build a statistical model for pattern generation in this space. Figure 1 shows the general statistical 

pattern recognition scheme. 

 

 

 

 

 

 

 

 

 

 
Figure 1: General statistical pattern recognition scheme (based on Bebis2) 

 

One of the research fields where applied signal processing and statistical pattern recognition are extensively employed is 

the fields of biometrics
18

 and HCI
21

. Having emerged in the 1960s and early 1970s (see e.g. Atal
1
 for biometric speaker 

verification/identification), biometrics achieved until now some maturity from which other (similar) pattern recognition 

problems like steganalysis can benefit. The idea of a knowledge transfer from biometrics to steganalysis is not a new 

one. One previous attempt is presented by Kharrazi et al.
10

. In their paper the authors propose to transfer a concept 

called information fusion from biometrics to image domain steganalysis. Fusion, which is a fairly common technique in 

biometrics, has the goal to determine the best set of experts in a given problem domain and devise an appropriate 

function that can optimally combine the decisions rendered by the individual experts
18

. 
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From the numerous fusion concepts known in biometrics two different ones shall be briefly considered here. The first 

one was presented by Sanderson and Paliwal
19

 in 2002 and is used in a simplified version in the considerations by 

Kharrazi et al.
10

. It uses a model which distinguishes into pre-classification (sensor and feature level) and post-

classification (measurement, rank and abstract/decision level) information fusion. Where pre-classification fusion refers 

to combining information prior to the application of any classifier (or matching algorithm), while in post-classification 

the information is combined after the decisions of the classifiers have been obtained. 

 

In their paper Kharrazi et al. limit themselves to three different operations: First, the transfer of the aforementioned 

fusion model from biometrics to the image steganalysis domain, second the practical evaluation of the impact of a 

fusion of three different steganalysers (two universal, one specific) on the classification performance for two image 

steganography techniques (fusion results presented ranging from worse than the best individual technique to better than 

all techniques – depending on the tested algorithm), and third, the question whether the fusion of steganalysers might 

lead to the same classification results as a truly “global” universal steganalyser (trained with a training set containing 

samples for all available steganographic techniques). In the test results of the third presented evaluation a reduction of 

the classification result by choosing an universal or fused detector instead a of specific one is seen (results achieved are 

between 3 and 7% worse), while at the same time it is indicated that the scalability of the steganalysis increases 

(complexity decreases). 

 

The second fusion approach to be mentioned here is the one used by Ross, Nandakumar, and Jain
18

. In this approach a 

five level fusion model (sensor, feature, match, rank and decision level fusion) is employed. This latter fusion approach 

by Ross et al. is chosen for the considerations on information fusion in steganalysis in this work because it has a finer 

granularity and incorporates (amongst other benefits) a more appropriate model for dynamic classifier selection. It is 

formalised and visualised by Oermann et al.
16 

and enhanced here by adding the corresponding signal processing 

operations between the fusion levels (see Figure 2).  

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Overview of the five signal processing steps and the five different fusion levels (with their corresponding fusion 

operators; based on Oermann et al.16) 

 

The five fusion levels
18

 (sensor (FUsl), feature (FUfl), match (FUml), rank (FUrl), and decision level fusion (FUdl)) used 

in this model with their corresponding generic fusion operators (�,�,�,∆,�) as well as the required signal processing 

operations (signal acquisition at sensor level, feature computation, classification/matching, ranking and decision 

making) can be summarised as follows (note: detailed examples on how fusion on these levels is performed in 

biometrics are presented by Ross et al.
18

):   

• Sensor level fusion (FUsl): entails the consolidation of evidence presented by multiple sources of raw data 

before they become subject to feature extraction
18

. 

• Feature level fusion (FUfl): involves consolidating the evidence presented by different feature sets of the same 

source. The following requirements for feature level fusion have to be considered: The features have to be 

related (i.e. really belong to one source), they must be of the same type (e.g. a variable length and a fixed 

length feature set should not be joined), and should be considered under the knowledge of the course-of-

dimensionality problem (i.e. the number of samples for a training set has to reflect the number of features). 

• Match level fusion (FUml; also known as score level fusion or classification level fusion): a fusion on 

matching score level implies a consolidation of matching scores (respectively classification results) gained 

from separate comparisons/classification of reference data and test data for each source. Because fusion on this 
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level is the most commonly applied technique it biometrics it incorporates an separate chapter in the work of 

Ross et al.
18

.  

• Rank level fusion (FUrl): which is of importance especially for identification problems, has the goal to 

consolidate the ranked outputs of individual classification systems in order to derive a consensus rank for each 

identity known. 

• Decision level fusion (FUdl): if a fusion is applied on decision level then each subsystem draws completely 

autonomous decisions, which are then combined. The operator (�) for this decision combination could be 

Boolean functions (like AND or OR), (weighted) majority voting, Bayesian decisions, etc. 

 

Instead of performing immediate fusion steps (or earliest possible stage fusions) at the levels identified above, this paper 

focuses on late fusion operations, e.g. instead of performing a sensor level fusion the signals by two different sensors 

they are processed in parallel until match or decision level and fused there. Table 1 identifies the fusion operators used 

in this document. Note: sensor- and rank level fusion are not considered in this work, because for sensor level only the 

original reference signals are used and rank level fusion is not applicable because the classification problem evaluated in 

this work is a two-class classification. 

 
Table 1: Fusion levels, processing operations and corresponding fusion operators evaluated in this work 

Level used In 

this work 

Exemplary signal processing operations and their 

options used 

Immediate fusion step / 

fusion operators used 

Feature 

computation 

One or more feature extractors working in different 

domains; different choices of features (global, segmental 

and local), normalisation or weighting techniques, etc. 

In this paper: computation of different segmental (in time, 

frequency and Mel-cepstral domain) features by one feature 

extractor 

Feature set fusion for the 

AAST feature extractor as 

unweighted concatenation of 

the three different sub-feature 

sets computed 

Classification/ 

matching 

Usage of different classifiers like support vector machines, 

neuronal networks, decision trees, etc, while at the same 

considering pre-processing (e.g. composition of 

training/testing sets) as well as post-processing (e.g. 

normalisation/weighting or distance computation in 

matching) techniques. In this paper: context independent11 

training and test set generation strategies for two different 

feature extractors (with corresponding output normalisation 

strategies) and five classifiers  

For the intra-window feature 

extractor AAST a match level 

fusion is performed by 

weighted majority vote; for 

the AudioRS feature extractor 

no match level fusion is 

possible due to the fact that it 

computes global features. 

Decision making Usage of decision operations based on different basic 

assumptions, like binary or multi-class decisions. In this 

paper: Weighting of the input based on model quality 

estimations. 

The fusion operator used in 

this work is a (weighted) 

majority voting in a two-class 

decision problem 

 

3. THE TEST SCENARIO 

Within this section the complete test scenario (consisting of the test goals, the test setup and a description of the test 

procedure) is described to evaluate the different fusion approaches established in Table 1. 

3.1. Test Goals 

The primary test goal defined for the evaluations performed here is to measure the impact of fusion on the classification 

accuracy. For the evaluation of this goal a match level and a decision level fusion of two different steganalysers (one 

using intra- (segmental) and the other inter-window (global) features) and five different classifiers is performed for the 

three selected data hiding algorithms. In the fusion tests the best feature extractor & classifier combinations for each 

algorithm (and key scenario) are determined. The secondary test goal is to consider the impact of the key selection 

assumption on the accuracy of the classification in steganalysis. To evaluate the impact of key selection two different 

scenarios are compared. In the first key selection scenario all files in the test sets are marked with one fixed key. In the 

second scenario each file is marked with one individual key. 



3.2. Test Setup 

This section describes the practical test setup. This includes the used audio test sets, the three used data hiding 

algorithms, feature computation steps, the five exemplarily chosen classifiers used here (with the corresponding output 

normalisation/weighting strategies) and the decision generation process. 

3.2.1. Audio Test sets used in training and testing 

For the tests performed here the AMSL Audio Test Set (aats389) from Kraetzer et al.
14,11

, containing 389 PCM coded 

audio files with an average duration of 28.55s, is split into two completely independent parts. The first part 

aats389_Part1, which contains the larger part of the files (366), is only used for training purposes. The smaller part 

aats389_Part2, which contains one file per genre from aats389 (except for “silence” genre) is used in testing to 

establish an a priori classifier confidence or model quality estimation for weighting on the classifier output in the tests. 

A new audio test set (testset24) is generated for the actual tests, containing exactly one file per genre present in aats389. 

This new test set has a duration per file of approximately 30 seconds. Table 2 below summarises the test sets used. 

 
Table 2: Audio test sets used 

Name of the test set Syntactical properties Number of files Avg. duration 

aats389_Part1 PCM16, 44.1kHz, stereo 366 27.1s 

aats389_Part2 PCM16, 44.1kHz, stereo 23 30s 

testset24 PCM16, 44.1kHz, stereo 24 30s 

3.2.2. Data hiding algorithms used 

In this paper a set of three data hiding algorithms (the steganography algorithm AMSL LSB stego, short AS1 and the 

watermarking algorithms AMSL Spread Spectrum Watermarking AW1 and Wasp AW3 – for algorithm descriptions see 

Kraetzer et al.
14

) is used for the generation of training and test data. Both classes of data hiding algorithms 

(steganography and digital watermarking) are present in the tests performed and can be compared in their statistical 

detectability. Each of the three algorithms is working in a different domain: AS1 is a time domain LSB algorithm, AW1 

a frequency domain spread spectrum technique and AW3 a wavelet domain algorithm. 

For the embedding two different key selection strategies are compared. The first (“fixed key”) uses exactly one 

predefined key (“UniversityOfMagdeburg”) for the generation of the marked versions of the training and test files – i.e. 

in all files the message is embedded using the same key. The second key selection strategy (“variable key”) uses the 

MD5-hash value of the filename for each file in a test set as the key for embedding – therefore it uses for each file in the 

test set a unique key. 

All files used in the evaluations are marked by the data hiding algorithms with 100% capacity (message to be embedded 

Goethes’ “Faust”). No evaluations on test sets with reduced message lengths or an estimation of message lengths, such 

as presented e.g. by Fridrich et al.
6
, is considered here - these are topics for further work. 

 
Table 3: Algorithm parameterisations used 

Alg. Embedding 

domain 

capacity message  fixed key variable key 

AS1 Time 

AW1 Frequency 

AW3 Wavelet 

100% Goethes’ 

“Faust” 

UniversityOfMagdeburg md5sum(filename) 

3.2.3. Feature extractors used 

Two different feature extractors are considered here. The first is the AMSL Audio Steganalysis Toolset
12

 (AAST) in its 

current version 1.04 (build 20071005), computing 7 intra-window features in time domain (sfvariance, sfcovariance, sfentropy, 

sflsbratio, sfl s b f l i p r a t e, sfmean, sfmedian), 56 intra-window features in Mel-cepstral domain (28 Mel-cepstral-domain 

coefficients (MFCCs) and filtered Mel-cepstral-domain coefficients (FMFCCs)) and 35 intra-window features in 

frequency domain (11 Formants and a 24 feature Bark scale histogram). Due to previous results
12

 on feature selection on 

the three data hiding algorithms the complete features from all three domains are fused into a 98 dimensional intra-

window feature vector for the evaluated files. In the tests performed here for each file 200 consecutive and non-

overlapping windows á 1024 samples per window are processed by AAST. 



The second feature extractor used here is an audio adaptation of the RS-Analysis (Regular/Singular analysis or dual 

statistics) approach of Fridrich et al.
7
 called for the rest of this work AudioRS. The implementation used for the tests is 

adapted by the authors from the ImageRS incorporated by Kathryn Hempstalk into the open source project Digital 

Invisible Ink Toolkit
8
. In contradiction to AAST, which is an intra-window feature extractor, AudioRS is an inter-window 

(global) feature extractor returning one 19 dimensional feature vector per file instead of one per window. 

3.2.4. Pre-processing for classification 

For feature extractor AAST, which computes features in three different domains for one window of audio material, the 

resulting features are fused at FUfl using as fusion operator (�) the concatenation of the three resulting feature vectors 

into one feature vector (fv) per window. For the second feature extractor AudioRS no fusion on this level is required 

since it computes only one fv per file. Another pre-processing operation to be performed is the normalisation required by 

the SVM classifier used. For this SVM-normalisation the appropriate tool of the libsvm
4
 package is applied. The other 

four classifiers (see section 3.2.5) do not require any pre-processing operations. 

3.2.5. The five exemplarily selected classifiers 

In the tests performed five different classifiers (prototype based and information theoretic classification approaches) are 

compared in their performance on a classical two-class classification problem proposed by applied steganalysis on the 

three different information hiding algorithms described in section 3.2.2.  

The support vector machine technique, which is a common choice in steganalysis, is a two class classification approach 

based on Vapnik’s
20

 statistical learning theory. The two-class SVM based classifier libsvm
4
 is used with its default 

parameters for kernel (RBF) and kernel parameters γ and c. This classifier and its parameterisation are in the following 

identified as SVM. 

The following four classifiers are taken from the WEKA toolset
22

 and are used with their standard parameters: The used 

Bayesian classifier (a Naïve Bayes implementation) computes classifications using a probabilistic approach, i.e. it tries 

to compute conditional class probabilities and then predict the most probable class. For a detailed description of the 

classification process of Naïve Bayes classifiers see Borgelt et al.
3
. It is identified in the following as Bayes. The 

classifier SimpleLogistics is used for building linear logistic regression models. A class for performing additive logistic 

regression with simple regression functions as base learners is used for fitting the logistic models. The optimal number 

of iterations to perform is cross-validated, which leads to automatic attribute selection. For more information see 

Landwehr et al.
15

. The classifier ADABoost is a class for boosting a nominal class classifier using the AdaBoost M1 

method
5
. J48 is a class for generating a C4.5 decision tree

17
. 

3.2.6. Post-processing 

For the intra-windows features, which are also evaluated window by window, either a match level or a decision level 

fusion has to be performed. In the first case each window of each AAST & classifier combination is considered 

individually in the matching of the file to the classes “marked” and “unmarked”. In the second case for each AAST & 

classifier combination a decision has to be made for each file and these decision results are then used as input to the 

fusion. Here a majority vote is used as mechanism to derive this decision. This means that if for at least n/2+1 windows 

of a file the classifier assumes the file to be modified by an data hiding algorithm, the complete file is classified as 

“marked/modified”. This principle is visualised in Figure 5 below showing in detail the decision level fusion stage of 

the used test setup.  

Generally, the classification of the files in aats389_Part2 against the model generated on aats389_Part1 is used for 

model quality estimation, i.e. the accuracy achieved in this classification is used to derive the weights for the 

corresponding feature extractor and classifier combination in the fusion. 

3.3. Test Procedure  

Based on Figure 1 and the descriptions on the test setup given in section 3.2, Figure 3 describes the signal processing 

operations prior to the match and decision level fusions. The tests performed in this work contain at pre-processing stage 

in Figure 1 no signal processing operations since the un-modified versions of the marked (fixed or variable key, fixed 

message at 100% algorithm capacity) and original files are directly used as input for the feature extraction for both 

classifiers.  

 



 
 

Figure 3: Signal processing operations performed by each feature extractor and classifier combination in training and 

testing (fixed payload, fixed and variable key) 

 

Figure 3 shows the signal processing operations performed for each combination of feature extractor and classifier 

tested here. For the intra-window feature extractor AAST one feature vector fv per window is processed, leading in the 

training to n (for the tests performed here n=200 is chosen) classification results cr (symbolised in the figure by the 

dotted arrow) for model quality estimation and in the testing to n classification results cr to be post-processed on match 

or decision level into one decision per file. For the global feature extractor AudioRS only one fv is returned per file, 

leading to exactly one cr each for model quality estimation and classification at decision level (symbolised in the figure 

by the solid arrow). 

 

The two different kinds of input to the match level fusion are marked in Figure 3 with �1 and �2. The components �1 

are the weights from the model quality estimation and �2 the classification results from testing (n in case of AAST and 

exactly one in case of AudioRS).  

Figure 4 shows the match level fusion (only possible for the intra-window feature extractor) performed for the output of 

AAST. The inputs for this fusion operation are the five outputs of the AAST & classifier combinations. The fusion 

operator � is a weighted sum, where the binary weights for this fusion are set to “1” when an AAST & classifier 

combination is considered significant (in the model quality estimations the ratio between “marked” and “unmarked” 

decisions is close to equal – remark: both are equally represented in the testing sets) and to “0” otherwise (the classifier 

tends too much into classifying everything as one of the two classes). The output of the match level fusion (�3) is a 

decision on the class of each file which can be used as an additional input to the next fusion stage (together with a 

confidence measure, which can act as weight in a following decision level fusion; �4). 

 

 

 

aats389_Part1 
 

aats389_Part2 
 

testset24 
 

Feature extraction Model generation 

Feature extraction 

Feature extraction 

Model quality estimation Classification 
 

Classification 
 

fv 

fv 

fv 

n × cr 

n × cr 

weights 

model 

training 

testing 

Embedding 
fixed or var. key 

Feature extraction 

Feature extraction 

Feature extraction 

fv 

fv 

fv 

Embedding 
fixed or var. key 

Embedding 
fixed or var. key 

�2 

�1 



 
Figure 4: Match level fusion based on the previous signal processing operations  

 

Figure 5 shows the decision level fusion in the tests performed here based on the input generated by the previous signal 

processing operations. The ten possible combinations of feature extractor and classifier (�1) with the corresponding 

weights (�2) are used in parallel to generate the input for the fusion. An additional input is generated by the match level 

fusion (�3 and �4). The decision level fusion operator (�) used in the tests presented here is basically a asymmetric 

weighted majority vote (asymmetric since in each decision the positive and negative cases can be weighted individually) 

using the model quality estimations as weights. 

 

 
Figure 5: Decision level fusion based on the previous signal processing operations and the output of the match level fusion 
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4. TEST RESULTS 

This section introduces the test results achieved based on the test scenario described in section 3. First, as a base for 

comparisons and to establish the required model quality estimations, the results of the analyses without decision level 

fusion are presented. Second, the main research goal of this paper – to show the impact of fusion in steganalysis – is 

addressed. The results for the secondary test goal – the evaluation of the impact of the key scenario – are compared for 

each test. 

4.1. Steganalysis results without fusion 

The complete results for the steganalysis for all three considered algorithms are, due to space constraints, presented in a 

separate file (APPENDIX_A.pdf; available at:  

http://omen.cs.uni-magdeburg.de/itiamsl/cms/front_content.php?idart=238). In this section the results are briefly 

summarised to act as point of reference for the remaining tests. If comparing in the results the performance of the 

feature extractors the results show a better performance for AAST in nearly all cases. If the performance of the classifiers 

is evaluated, then the ADABoost and SimpleLogistics outperform the other algorithms in most cases while the Bayesian 

classifier achieves very low results in nearly all tested cases. When evaluating the results algorithm by algorithm it can 

be stated that for AS1 no significant classification results could be achieved for this algorithm. It shows the highest 

result for the model quality estimation with 52.2% (fixed key) and for the testing with 54.2% (for the variable key 

scenario). The evaluations for AW1 and AW3 show more promising results. Table 4 and Table 5 summarise from the 

complete results the best results achieved (in terms of classification accuracy) in the steganalysis without fusion on the 

algorithms and identifies the feature extractor and classifier combination which achieve these results.  

 
Table 4: Best results achieved in model quality estimation (train. set: aats389_Part1, test set: aats389_Part2)  

fixed key  variable key   

Alg. Accuracy 

(per file) 

Feature extractor & 

classifier 

Accuracy 

(per file) 

Feature extractor & 

classifier 

AS1 52.2% AudioRS & SimpleLog. 50.0% AudioRS & SimpleLog. 

AW1 89.1% AAST & ADABoost 93.5% AAST & J48 

AW3 60.9% AAST & SVM 60.9% AAST & SVM 

 

Considering the results from testing presented in Table 5 it can be seen that the best accuracies achieved are for AW1 

approximately the same and for AW3 higher (by 15%-17%) than the ones found in model quality estimation (Table 4). 

This result for AW3 seems to be an outlier; in general (average over all ten feature extractor & classifier combinations) 

no significant better performance on the test set testset24 can be noticed. 

 
Table 5: Best results achieved in testing (train. set: aats389_Part1, test set: testset24) 

fixed key  variable key   

Alg. Accuracy 

(per file) 

Feature extractor & 

classifier 

Accuracy 

(per file) 

Feature extractor & 

classifier 

AS1 52.1% AudioRS & SimpleLog. 54.2% AudioRS  & Bayes 

AW1 89.6% AAST & ADABoost 89.6% AAST & ADABoost 

AW3 75.0% AAST & ADABoost 77.1% AAST & ADABoost 

 

From the test results achieved, the choice of the key scenario seems to have little influence on the performance of 

feature extractor and classifier. Only in 5 out of the 30 direct comparisons (AW1: AAST & SimpleLogistics, AAST & J48, 

AudioRS & J48; AW3: AudioRS & SimpleLogistics, AudioRS & J48) between fixed and variable key the difference can 

be considered significant (>2%) and should be subjected to further research. 

4.2. Steganalysis results with fusion 

In this section the fusion steganalysis results are presented based on the test procedure introduced in section 3.3: first, 

for the match level fusion results computed by the five classifiers on the AAST output, second for a decision level fusion 

on AAST, AudioRS and the match level fusion output, based on the model quality estimations introduced in 4.1. 



4.2.1. Match level fusion 

The results for the match level fusion for the intra-window feature extractor AAST are presented in Table 6. The weights 

for and classifier output in this fusion are set to “1” when an AAST & classifier combination is considered significant (in 

the model quality estimations the ratio between “marked” and “unmarked” decisions is close to equal) and to “0” else 

(the classifier is classifying nearly everything as one of the two classes) – see Table 6 columns titled “weights”. 

 
Table 6: Match level fusion results (AAST; training set: aats389_Part1, test set: testset24) and error rates (TP=true positive, 

TN=true negative, FP=false positive, FN=false negative) 

weights Error rates Alg. Key 

scenario 

S
V

M
 

B
a

ye
s 

S
im

p
.L

o
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. 

A
D

A
B

o
o
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J
4
8

 

Accuracy 

(per file) TP TN FP FN 

fixed 1 1 0 0 0 50.0% 50.0% 0% 0% 50.0% AS1 

variable 1 1 0 1 0 50.0% 50.0% 0% 0% 50.0% 

fixed 1 0 1 1 1 93.8% 50.0% 43.8% 0.0% 6.3% AW1 

variable 1 0 1 1 0 91.7% 50.0% 41.7% 0.0% 8.3% 

fixed 1 0 1 1 0 75.0% 50.0% 25.0% 0.0% 25.0% AW3 

variable 0 1 1 1 0 79.2% 45.8% 33.3% 4.2% 16.7% 

 

As can be seen in the comparison between Table 6 and the results for steganalysis without fusion presented in section 

4.1 the results are improved for AW1 and AW3 in three out of four cases. when combining the output of the SVM, 

SimpleLogistics, ADABoost and J48 classifiers the result for AW1 with fixed key rises from 89.6% (AAST & ADABoost, 

see Table 5) to 93.8%. When combining SVM, SimpleLogistics and ADABoost the result for AW1 and variable keys rises 

from 89.6% to 91.7%. For AW3 and fixed keys the result after match level fusion is with 75% the same as without 

fusion, while for variable keys the result is improved from 77.1% to 79.2% by combining Bayes, SimpleLogistics and 

ADABoost. The results for AS1 resulted in all cases in an accuracy of 50% which equals the probability for guessing in 

this two-class classification problem. 

4.2.2. Decision level fusion 

Table 7 summarises briefly the best results achieved in decision level fusion when fusing for the three algorithms the 

output of the 10 feature extractor & classifier combinations and the output of the match level fusion for the AAST 

feature extractor. The weights for the fusion are set to “1” (the input is used) when a feature extractor & classifier 

combination is considered significant (≥52%) in the model quality estimations introduced in section 4.1, otherwise the 

weight is set to “0” (the input is not used). 

 
Table 7: Summary of the best classification results achieved in decision level fusion (including the output of the match level 

fusion as one source for input; training set: aats389_Part1, test set: testset24) and error rates (TP=true positive, TN=true 

negative, FP=false positive, FN=false negative) 

weights 

AAST AudioRS Error rates 

Alg. Key 

scenario 
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Accuracy 

(per file) 

TP TN FP FN 

fixed 0 1 1 1 1 1 1 0 1 1 0 52.1% 50.0% 2.1% 47.9% 0.0% AS1 

 variable 1 1 1 1 1 0 1 0 1 1 0 54.2% 37.5% 16.7% 33.3% 12.5% 

fixed 1 1 1 1 1 0 1 1 0 0 1 93.8% 50.0% 43.8% 6.3% 0.0% AW1 

 variable 0 1 1 1 1 0 1 0 1 0 1 91.7% 50.0% 41.7% 8.3% 0.0% 

fixed 0 1 1 0 0 0 0 0 0 0 1 75.0% 50.0% 25.0% 25.0% 0.0% AW3 

 variable 1 1 1 1 1 0 0 0 0 0 1 79.2% 45.8% 33.3% 16.7% 4.2% 



 

As can be seen in the comparison between these decision level fusion results and the results from non-fusion 

steganalysis and match level fusion, the results presented in Table 7 match for each algorithm exactly the highest result 

achieved before (the same fact was established in test without using the output of the match level fusion as additional 

input). No increase in the classification accuracies could be achieved in the tests performed here. The reason for this is 

assumed to be the low reliability of the individual experts to be fused here. A different outcome would be expected if 

the individual feature extractor & classifier combinations had an accuracy >90%. 

 

5. SUMMARY 
For the primary test goal of showing the impact of fusion it can be said, that for the match level fusion results, which 

were obtained for the intra-window feature extractor AAST and using five classifiers, an increase of the classification 

accuracy is achieved for two of the three algorithms evaluated here. In the best test case it rose from 89.6% (AAST & 

ADABoost, see Table 5) to 93.8%. 

When summarising the results for the decision level fusion the overall classification accuracy was not improved the 

conducted decision level fusion tests compared to non-fused or match level fusion results. This is consistent with the 

practical results on decision level fusion obtained by Kharazzi et al.
10

 where the fusion accuracies are also only in few 

test cases better than the non-fused results.  

 

As shown by the results on match level, fusion has to be considered a promising method to improve the detection 

accuracy in steganalysis and closely related sciences. In general we consider fusion as a useful method for improving 

the value of steganalysis as a reliable security mechanism for secure storage applications, e.g. in long term archiving 

environments. When comparing the results for the steganography algorithm and the two watermarking algorithms in the 

test set, the (expected) result was that the watermarking algorithms show a far higher detectability than the 

steganography algorithm. If this is expanded into the field of media forensics, were the AAST with the SVM classifier 

was in the past successfully employed for microphone classification
11

, the high classification accuracies achieved there 

for the microphones support the assumption that this application might even more benefit from the introduced fusion 

approach than the steganography and watermark detection performed here. 

 

When summarising the results for the secondary test goal (the impact of key selection) the results show a rather small 

impact of the key selection strategies tested on the classification results. Especially the results for the non-fusion 

analyses (see APPENDIX_A.pdf; available at:  

http://omen.cs.uni-magdeburg.de/itiamsl/cms/front_content.php?idart=238) support the assumption that the choice of 

the key has in average for the three tested algorithms only limited impact on the classification accuracy. Only in 5 out of 

the 30 direct comparisons between fixed and variable key the difference can be considered significant and should be 

subjected to further research. 

 

Based on the results of this paper, further research should be invested into more feature extractors for audio 

steganalysis, hopefully generating feature extractor & classifier combinations which show a higher relevance (higher 

classification accuracy) and therefore would allow for additional evaluations, e.g. message length estimations. Besides 

this most urgent need for further research additional directions would be evaluations on the complexity/scalability of the 

introduced approach, or an extension from a two-class problem (“marked” or “unmarked”) into a multi-class problem of 

identification of the used data hiding algorithm – which would also allow for the incorporation of rank level fusion 

operations. Additionally the fusion approach considered her should be transferred also into media forensics (e.g. for 

microphone identification). 
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