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ABSTRACT 
In the paper we extend an existing information fusion based audio steganalysis approach by three different kinds of 

evaluations: The first evaluation addresses the so far neglected evaluations on sensor level fusion. Our results show that 

this fusion removes content dependability while being capable of achieving similar classification rates (especially for 

the considered global features) if compared to single classifiers on the three exemplarily tested audio data hiding 

algorithms. The second evaluation enhances the observations on fusion from considering only segmental features to 

combinations of segmental and global features, with the result of a reduction of the required computational complexity 

for testing by about two magnitudes while maintaining the same degree of accuracy.  

The third evaluation tries to build a basis for estimating the plausibility of the introduced steganalysis approach by 

measuring the sensibility of the models used in supervised classification of steganographic material against typical 

signal modification operations like de-noising or 128kBit/s MP3 encoding. Our results show that for some of the tested 

classifiers the probability of false alarms rises dramatically after such modifications. 

 

1. MOTIVATION AND INTRODUCTION 
Steganalysis, as the technique to detect hidden communication channels in media files or streams, is one of a number of 

important techniques to establish trust in media data. Like other such techniques (e.g. source identification as in digital 

camera forensics
21

) it becomes increasingly a hot topic in environments where a high level of trust in media data is 

required, such as high security network areas or secure long term archiving. Especially in the latter case an archiving of 

malware or hidden channels might have yet unforeseeable consequences for the trust in complete digital archives in the 

future. 

From previous work applying information fusion in steganalysis it is known that fusion is a good method to improve the 

performance of a steganalysis approach in practical evaluations in terms of universality (Kharrazi et al.
1
) or detection 

performance (Pevny and Fridrich
2
, Kraetzer and Dittmann

3
), and thereby the overall value of steganalysis as a security 

mechanism. This paper extends previous considerations from Kraetzer and Dittmann
3 

on the application of information 

fusion in audio steganalysis by following three closely related test goals: 

A. Completion of the information fusion based audio steganalysis approach presented in Kraetzer and Dittmann
3
 

by practical observations on sensor level fusion 

B. Integration of global features into the fusion based steganalysis approach, aiming for more accurate decisions 

derived in multi-level information fusion 

C. Verification of the plausibility of the introduced steganalysis approach for two common audio processing 

operations (MP3 encoding and de-noising) 

 

For addressing the first goal, additional/alternative source sensors are implemented in software to accompany the 

original audio signal. This idea is similar to work by Ru et al.
5
, Ozer

4
 et al. and Avcibas

6
, where signal processing 

operations (de-noising
4,6

 and linear predictive coding
5
) are used to generate an assumably unmarked version of the 

signal as a reference signal in non-blind steganalysis. Our approach uses the same basic assumption that by signal 

processing an alternative version of a stego-file can be created where the hidden message can no longer be retrieved. In 

contradiction to the previous approaches by Ru et al.
5
, Ozer

4
 et al. and Avcibas

6
 the newly generated alternative signals 

are not used as reference. Instead we fuse original and alternative signal on sensor level, to generate our alternative 

source sensor output. The test results achieved here using three exemplarily selected data hiding algorithms show that 

the content influence is reduced dramatically, while the subsequent classifications show similar classification 

accuracies. Based on the results we believe that by employing content removing operations in fusion based steganalysis 

the gap between universality enhancing and application specific approaches might be reduced. 

For the second test goal of the paper, the feature extractor used in Kraetzer and Dittmann
3
 (AAST, the AMSL Audio 

Steganalysis Toolset) is re-evaluated and enhanced here for the possibilities of generating useful global features for 

steganalysis. The newly generated global features are then incorporated into the fusion based steganalysis approach and 



their impact to complexity and classification performance is evaluated, showing that they result in similar classification 

accuracies while at the same time dramatically reducing the time required for the computation of the classification. 

For the third goal, the verification of the plausibility of the introduced steganalysis approach, models generated for 

steganographic algorithms in the training phase of supervised classification are used in testing to classify the output of 

common (non-malicious) audio signal modifications (de-noising and MP3 compression). This is done to measure the 

error rates achieved, to show which impact those signal modifications have especially on the false positive rates. 

Thereby the plausibility of the models used in this steganalysis approach in terms of sensibility against other kinds of 

signal modifications is verified. The results show, that indeed the risk of false alarms is increased in some cases to 100% 

by performing non-malicious signal modifications. 

 

The rest of this paper is structured as follows: section 2 summarizes the complete test scenario design for test goals A, B 

and C, including the test setup. Section 3 describes the test results for all three test goals identified above, while section 

4 summarizes our work and highlights directions for future work. 

 

2. THE TEST SCENARIO 
Based on the goals defined for this work, this section summarizes the complete test scenario (consisting of the test 

design and a description of the test setup). 

2.1. Test Design  

The general approach within this paper to address all three test goals identified in section 1 is the systematic usage of 

statistical pattern recognition methods provided by the renown data mining suite Weka
22

. The necessary feature 

extraction for the involved classification tasks is performed by applying our own audio feature extractor AAFE (see 

section 2.2.5) in a version especially enhanced for this paper by new features (especially global features). It is tested on 

material marked by three exemplarily chosen data hiding algorithms
3
. 

As an initial step prior to the evaluations for all three test goals, marked versions of the two test sets introduced in 

section 2.2.3 are generated using the three exemplarily chosen data hiding algorithms from section 2.2.1. In a second 

initialization step the two signal modification de-noising (by re-quantization to 8 Bit resolution) and MP3 encoding (see 

section 2.2.2) are used to generate modified versions of the marked and unmarked material for the evaluations of test 

goals A (sensor level fusion) and C (plausibility of the introduced steganalysis). 

As a first evaluation step, the results of the analyses on the marked and unmarked material without fusion or signal 

modifications are presented for global and segmental features to act as a base for comparisons (for all three test goals) 

and to establish the required classifier quality estimations. The quality estimations are made based on the classifier 

quality Q defined in section 2.2.6. The results of these evaluations (using 10-fold stratified cross validation on the test 

set aats389 as well as independent training with aats389 and testing with testset24 for the global as well as segmental 

features) are presented in section 3.1 

In a second evaluation step, the impact of sensor level fusion (test goal A) using the fusion operator for this level 

described in section 2.2.7 is evaluated in section 3.2 for 10-fold stratified cross validation on aats389 as well as 

independent training with aats389 and testing with testset24 for the global as well as segmental features. 

Third, in section 3.3 the benefit of mixed level (or multi level) fusions is briefly evaluated (test goal B). While the 

results for the global features presented in this paper are in 3.1 and 3.2 derived by decision level observations (one 

decision is generated per file), the segmental features are evaluated in these chapters on a per frame basis (i.e. in match 

level observations). If the output of individual experts on the same type of features is used as input for an information 

fusion, then the fusion can be performed on the same level on which the experts work (e.g. match level for the 

segmental tests done here). If experts working on different kinds of features are joined, then the fusion has to be 

performed on the highest of the used levels. In our tests in section 3.3 this would therefore be the decision level. Here 

two exemplarily intra-level fusions (five best classifiers on global features and five best classifiers on segmentals for 

each algorithm) and one mixed- (or multi-)level fusion (the two best globals and the best segmental) are performed and 

compared with each other and the performance of the fest single classifiers involved in these tests. 

In a fourth set of evaluations, the five best classifiers for each algorithm (selection of the algorithms is based on the 

quality function defined in section 2.2.6) are trained on the output of the de-noising and MP3 conversion run on a 

completely unmarked aats389 and then used to verify (test) a completely unmarked testset24 after the corresponding 

signal modification (test goal C). 



2.2. Test Setup 

The practical test setup includes three data hiding algorithms used for testing in test goals A,B and C, the additional 

signal modification operations required for sensor level fusion and the plausibility testing (test goals A and C), the audio 

test sets, pre-preprocessing, the feature extractor, the selected classifiers and quality function as well as the used fusion 

operators. 

2.2.1. Data hiding algorithms used 

In this paper a set of three data hiding algorithms (the steganography algorithm AMSL LSB stego, short AS1 and the 

watermarking algorithms AMSL Spread Spectrum Watermarking AW1 and Wasp AW3 – for algorithm descriptions see 

Kraetzer et al.
19

) from some of our previous publications
3,19

 is used here again for the generation of training and test 

data. Both classes of data hiding algorithms (steganography and digital watermarking) are present in the tests performed 

and can be compared in their statistical detectability. Each of the three algorithms is working in a different domain: AS1 

is a time domain LSB algorithm, AW1 a frequency domain spread spectrum technique and AW3 a wavelet domain 

algorithm. 

The embedding is performed using exactly one predefined key (“UniversityOfMagdeburg”) for the generation of the 

marked versions of the training and test files – i.e. in all files the message is embedded using the same key. All files 

used in the evaluations are marked by the data hiding algorithms with 100% capacity (message to be embedded is 

Goethes’ “Faust” in an ASCII representation). No evaluations on test sets with reduced message lengths or an 

estimation of message lengths, such as presented e.g. by Fridrich et al.
20

 or the impact of different key selection 

strategies33, are considered here - these topics are reserved for further work. 
Table 1: Algorithm parameterizations used 

Alg. Embedding domain capacity 
used 

message  fixed key 

AS1 (AMSL LSB stego) Time 

AW1 (AMSL Spread 

Spectrum Watermarking) 

Frequency 

AW3 (Wasp) Wavelet 

100% Goethes’ “Faust” UniversityOfMagdeburg 

2.2.2. Additional signal modifications used 

For the evaluation of test goals A (sensor level fusion) and C (plausibility of the introduced steganalysis) signal 

processing operations additional to the data hiding methods used (see section 2.2.1) have to be defined. These 

operations are a de-noising by re-quantization to 8 Bit resolution (and back to 16 Bit) and a MP3 encoding with 

128kBit/s. The purpose of the re-quantization is two-fold: next to the MP3 conversion it is one of the two common 

signal modifications against which the classifier models are tested for the plausibility evaluation in test goal C. 

Additionally the output of this de-noising is used to generate by software the second sensor signal required for sensor 

level fusion (see section 2.2.7).  

2.2.3. Audio test sets used in training and testing 

For the tests performed here the two test sets (aats389, testset24) from Kraetzer et al.
3
 are used again. The first set 

contains 389 PCM coded audio files with an average duration of 28.55s is used for evaluations based on 10-fold 

stratified cross validation as well as for training purposes in independent training and testing. The set testset24 is used 

for the actual tests in independent training and testing, containing exactly one file per genre present in aats389. This 

second test set has a duration per file of approximately 30 seconds. Table 2 below summarizes the test sets used. 

 
Table 2: Audio test sets used 

Name of the test set Syntactical properties Number of files Avg. duration 

aats389 PCM16, 44.1kHz, stereo 389 28.55s 

testset24 PCM16, 44.1kHz, stereo 24 30s 



2.2.4. Pre-processing 

Generally a windowing with rectangular, non-overlapping windows of window size 1024 samples is performed prior to 

feature extraction. For each file 20 windows per channel are used for the evaluations, since all used test files are stereo 

this results in 40 frames (equal to about 0.9s of audio material per file). 

2.2.5. The feature extractor used 

For the evaluations in this paper an enhanced version of the AMSL Audio Steganalysis Toolset (AAST
3
) is used. The 

main modification was the re-implementation and enhancement of the integrated feature extractor AMSL Audio Feature 

Extractor (AAFE). The new version (v.2.0.5) inherits the time-, frequency- and Mel-cepstrum domain based intra-

window features from its predecessor (v.1.0.4) and extends them by 3 new ones in time domain (the zero crossing rate
9
, 

the energy
10

 and RMS-amplitude
11

), 520 new features in frequency domain (spectral centroid
12

, spectral flux
13

, spectral 

roll-off
14

, spectral bandwidth
10

, spectral smoothness
14

, spectral irregularity
11

, spectral entropy
11

 and base frequency
15

, as 

well as a 512 frequency component histogram
16

) and 26 in Mel-cepstrum domain (MFCCs and FMFCCs
18

 on the 

second order derivative of the audio signal
17

). The most significant addition to features of the previous version of AAFE 

are the MFCCs and FMFCCs on the second order derivative of the audio signal, which have been added due to their 

good results achieved by Liu et al.
17

. The extractor therefore computes now 590 intra-frame features: 8 in time domain 

(sfzero_cross_rate, sfenergy, sfentropy, sflsbratio, sfl s b f l i p r a t e, sfRMS_amplitude, sfmean, sfmedian), 530 in frequency domain (sfsp_centroid, 

sfsp_flux, sfsp_rolloff, sfsp_bw, sfsp_smoothness, sfsp_irregularity, sfsp_entropy, sfsp_base_freq, sfFormant_A1, …, sfFormant_singer, sfspec1,…,sfspec512) and 

52 in Mel-cepstrum domain (sfMFCC1, ..., sfMFCC13, sfFMFCC1, ..., sfFMFCC13, sfd2MFCC1, ..., sfd2MFCC13, sfd2FMFCC1, ..., 

sfd2FMFCC13). 

Additionally 17 new inter-window features are computed by AAFE v.2.0.5, as a means to reduce the computational 

complexity for the following classification operations. The following features are implemented: the total zero crossing 

rate and short time energy
10

 as well as the averages of all nine time domain features and the arithmetic averages of the 

spectral entropy, spectral rolloff, spectral centroid, spectral bandwidth (threshold based), spectral irregularity and a 

spectral bandwidth which is center frequency based
13

 (gfzcr_total, gfzcr_AVE, gfenergy_AVE, gflow_energy, gfentropy_AVE, gfpitch_AVE, 

gfmedian_AVE, gfmean_AVE, gflsb_ratio_AVE, gflsb_flipping_rate_AVE, gfrms_amplitude_AVE, gfspectral_entropy_AVE, gfspectral_rolloff_AVE, 

gfspectral_centriod_AVE, gfspectral_bandwidth_AVE, gfspectral_irregularity_AVE and gfspectral_bandwidth_2_AVE). 

2.2.6. The selected classifiers and quality function 

For the test goals A and B all 74 classifiers implemented in the current version of Weka (version 3.6.1
22

) with their 

default parameterizations are used. For a detailed description of the classifiers and their default parameters see the Weka 

manual or Hall et al.
22

. From this complete list of classifiers a subset of algorithms is selected for further evaluations on 

test goals B and C by usage of a quality function. The quality Q of a classifier is determined in this paper as a function 

of its classification accuracy (accuracy; defined here as the sum of all true positives and true negatives divided by the 

overall number of test samples, therefore a bigger value indicates better classification behavior while an accuracy of 

50% in our two-class problem would be equal to the classifier randomly “guessing” at the class) and time required for 

the testing (time), as: 
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>

=

%50

%50
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In case of accuracy=50% (i.e. the classifier is guessing at the result) Q is set to zero to avoid arithmetic problems. The 

time is determined by using the Wekas own time measurements.  

The modeling of this quality function reflects the observation that in practical application a faster decision is sometimes 

much more valuable than a much slower but slightly more accurate answer. 

2.2.7. Fusion operators  

Two different types of fusion operators are used in this paper: one on sensor level and one in late fusion on match and 

decision level. For the first fusion operator figure 1 shows the process which takes the input of two sensors (the audio 

input device and a de-noised version of the signal – a kind of software based sensing; see section 2.2.2), combines 

(fuses) them by sample-wise subtraction and then outputs the difference signal, which is equivalent to the signal part 

removed by the de-noising. The sensor characteristics of the first sensor in figure 1 is therefore a simple file.read() 

function on a WAV audio file while the second sensor performs a file.read() on the same file followed by down 

quantization to 8 bit and requantization to 16 bit. 



 
Figure 1: Sensor level fusion on the audio input signal using a de-noiser and subtraction 

 
 

If the output of individual experts on the same type of features is used as input for an information fusion, then the fusion 

can be performed on the same level on which the experts work (e.g. match level for the segmental tests done here). If 

experts working on different kinds of features are joined, then the fusion has to be performed on the highest of the used 

levels – in this paper we perform in late fusion two exemplarily intra-level fusions and one mixed- (or multi-)level 

fusion by using as the second fusion operator in this paper a simple majority vote (on classifiers selected using the 

quality function described in section 2.2.6).  

 

3. TEST RESULTS 
This section introduces the test results achieved based on the test scenario described in section 2. First, as a base for 

comparisons for all three goals and to establish the required classifier quality estimations, the results of the analyses 

without fusion are presented for global and segmental computed features. In section 3.2 a sensor level fusion is 

evaluated for test goal A to show which impact content removing operations have on the classification process in 

steganalysis. In 3.3 for test goal B two selected intra-level and one mixed- (or multi-)level fusion are performed to 

evaluate the impact of late fusions (match- and decision level) on the classification accuracy. In the last part of this 

chapter, for test goal C an investigation into the plausibility of models trained for steganalysis against common signal 

modifications like MP3 encoding or de-noising are evaluated exemplarily. 

3.1. Experimental comparison of global and segmental feature based results 

Especially for test goal B, but also as a required point of reference for the other two test goals, we evaluate in this 

section the performance of the 74 classifiers in Weka using the global as well as the segmental features. Furthermore the 

best classifiers for each data hiding algorithm and feature type (global or segmental) are determined using the quality 

function Q introduced in section 2.2.6. Table 3 summarizes the results for the global features for 10-fold stratified cross 

validation on the set aats389 as well as independent training with aats389 and testing with testset24. The best results in 

each column are highlighted in bold script. 

 
Table 3: Classification accuracies overview over all 74 WEKA classifiers (using: global features on 40 frames á 1024 samples 

per file in 10-fold stratified cross validation on aats389 and training with aats389 and testing with testset24) 

 10-fold strat. cross valid. Training and testing 

 AS1 AW1 AW3 AS1 AW1 AW3 

Maximum achieved accuracy 86.15% 92.68% 68.94% 57.29% 75.00% 59.38% 

Time duration (s) 598.7 603.8 617.3 222 191 180 

Errors 13 14 14 13 13 13 

50<=x<52% 24 8 11 55 9 16 

52<=x<60% 32 1 9 6 2 45 

60<=x<70% 2 1 40 0 34 0 

70<=x<80% 0 6 0 0 16 0 

80<=x<90% 3 24 0 0 0 0 

x>=90% 0 20 0 0 0 0 

 

The results presented in table 3 show the following: the highest achieved maximum classification accuracy in cross 

validation and training and testing is seen for AW1 (92.68% and 75% respectively). AW3 shows in average the second 

best result, while AS1 ranks last – confirming our previous findings under similar test setups
3
. With an average duration 

a little bit over 600s for all tests the cross validation performs only 3-times slower than the training and test. In all tests 

De-noiser - Signal duplicator 

Audio file input   

Difference output 

Sensor 1 

(software based) Sensor 2 



the same set of about 13 classifiers (in two cases 14) are not able to successfully generate a decision. The reasons for 

this are two fold: some classifiers terminate with an error stating that they have not enough memory to complete the 

task, some classifiers are terminated after 12 hours to keep the overall test duration limited (the time for thoses 

terminated is not included in the timings presented in the tables 3 and 5), others are cost sensitive classifiers which 

would not run without a cost file, which was not available for this test.  

The lower six rows in table 3 are basically a histogram of how many classifiers achieved accuracies in the 

corresponding ranges. Again AW1 shows the best performance: in cross validation for 20 classifiers an accuracy of more 

than 90% was achieved, with a maximum at 92.68% (weka.classifiers.trees.LMT). Generally the results in the training 

and testing setup are lower than in the cross validation, this seems to be due to the lower correlation between the test and 

training data in this case. The good results found for AS1 in cross validation (weka.classifiers.lazy.IB1 84.87%, 

weka.classifiers.lazy.IBk 84.87% and weka.classifiers.lazy.KStar 86.15%) would not be confirmed in independent 

training and testing. 

 

Table 4 identifies the best five classifiers for each algorithm and the global features. In contrast to our previous 

publications the best algorithms are here not determined by looking only on the classification accuracies achieved but 

instead by applying the quality function Q defined in section 2.2.6, basically determining the ratio between a classifiers 

accuracy and the time it requires for the decision. This is based on the observation that in practical application a faster 

decision is sometimes much more valuable than a much slower but slightly more accurate answer. 

These classifiers identified in table 4 are used in the consecutive tests in sections 3.3 and 3.4. 

 
Table 4: Identification of the five classifiers for each algorithm with the best quality value Q, determined in 10-fold stratified 
cross validation on aats389 using global features (the value in brackets gives the value for Q) 

 
 AS1 AW1 AW3 

Max. quality Q 0.24 0.43377692 0.16866066 

Best classifier lazy.IBk (0.24) trees.RandomTree (0.43) rules.OneR (0.17) 

2nd lazy.IB1 (0.09) trees.REPTree (0.42) meta.FilteredClassifier (0.14) 

3rd meta.FilteredClassifier (0.06) rules.OneR (0.41) trees.DecisionStump (0.12) 

4th trees.DecisionStump (0.06) trees.DecisionStump (0.38) bayes.BayesNet (0.12) 

5th bayes.BayesNet (0.06) misc.HyperPipes (0.36) meta.AttributeSelectedClassifier (0.11) 

 

The best classifier for AS1 (weka.classifiers.lazy.IBk accuracy 84.87% at about 3.5s runtime) achieves about half the 

rating as the best classifier for AW1 (weka.classifiers.trees.RandomTree 89.47% accuracy at about 2s runtime), simply 

because it takes about two times the time to reach a decision with a similar accuracy. The same is true for the best 

classifier for AW3 (weka.classifiers.rule.OneR 60.29% accuracy at about 3.6s). 

 

Similar to table 3, table 5 shows the summary of the classifier results for the global features for 10-fold stratified cross 

validation on aats389 as well as training with aats389 and testing with testset24. 

 
Table 5: Classification accuracies overview over all 74 WEKA classifiers (using: segmental features on 40 frames á 1024 

samples per file in 10-fold stratified cross validation on aats389 and training with aats389 and testing with testset24) 

 10-fold strat. cross valid. Training and testing 

 AS1 AW1 AW3 AS1 AW1 AW3 

Maximum achieved accuracy 94.19% 96.47% 70.36% 50.12% 89.48% 61.22% 

Time duration (s) 104467.5 86056.2 113349.6 30870 35852.05 54521.25 

Errors 31 29 35 29 27 31 

50<=x<52% 35 0 1 45 0 20 

52<=x<60% 3 8 26 0 11 17 

60<=x<70% 0 3 11 0 1 6 

70<=x<80% 1 1 1 0 4 0 

80<=x<90% 0 3 0 0 31 0 

x>=90% 4 30 0 0 0 0 

 



Again AW1 shows the best detectability with 30 classifiers achieving an accuracy larger than 90% in cross validation 

here the segmentals seem to outperform the global features in terms of accuracy. Like already shown for the global 

features, the good results for four classifiers on AS1 in cross validation could not be verified with independent training 

and testing.  

If the results for the global and segmental features are compared directly, besides the slight overall increase in the 

classification accuracy two additional facts are noticeable: the number of classification algorithms which can not fulfill 

the classification task (row “error” in the tables) more than doubles and the time duration for the tests increase by at 

least two magnitudes. The former is due to the increased memory requirement for the segmental features (by factor 20 

in comparison to the globals) and a corresponding increase of the number of “out of memory errors” from Weka, while 

the latter is due to the much more complex training and testing tasks at hand and thereby more timeouts at our 12h limit. 

 
Table 6: Identification of the five classifiers for each algorithm with the best quality value Q, determined in 10-fold stratified 
cross validation on aats389 using segmental features (the value in brackets gives the value for Q) 

 
  AS1 AW1 AW3 

Max. Quality Q 0.00221 0.01 0.00092 

Best rules.OneR (0.00221) misc.HyperPipes (0.0100) misc.HyperPipes (0.00092) 

2nd trees.RandomTree (0.00093) trees.RandomTree (0.0097) trees.RandomTree (0.00088) 

3rd trees.RandomForest (0.00043) misc.VFI (0.0044) meta.Vote (0.00065) 

4th lazy.Ibk (0.00041) rules.OneR (0.0030) meta.CVParameterSelection (0.00059) 

5th misc.HyperPipes (0.00022) trees.RandomForest (0.0028) rules.ZeroR (0.00058) 

 

Table 6 identifies similar to table 4 the best five classifiers for each algorithm and the segmental features for use in 

sections 3.3 and 3.4. Since the classification times for the segmental features are – due to their much lager and more 

numerous feature vectors – longer than for the globals, the value for Q is much lower, even while similar accuracies are 

achieved (e.g. AW1 weka.classifiers.misc.HyperPipes at 83.89% and 85s run time). Summarizing those observations on 

the time behavior it has to be said that the usage of global features (based on the same input signal amounts) results in 

similar classification accuracies, while at the same time the probability for an algorithm to succeed the task (without an 

“out of memory error”) increases and the overall computation time for the tests decreases (on the machine used for the 

test in this paper from 29h for one algorithm and all successful classifiers in cross validation down to 10 minutes). 

3.2. Sensor level fusion results (test goal A) 

After the previous section introduced as a required reference the results without fusion, here the results with the sensor 

level fusion introduced in section 2.2.7 are given. Table 7 summarizes the results for the global features for 10-fold 

stratified cross validation on aats389 as well as training with aats389 and testing with testset24.  

 
Table 7: Sensor level fusion - classification accuracies overview (using: all 74 classifiers, global features on 40 frames á 1024 
samples per file in 10-fold stratified cross validation on aats389 as well as training with aats389 and testing with testset24) 

 

 10-fold strat. cross valid. Training and testing 

 AS1 AW1 AW3 AS1 AW1 AW3 

Maximum achieved accuracy 92.88% 90.57% 66.55% 55.68% 69.57% 58.89% 

Time duration (s) 674.0 647.0 518.0 194.0 193.0 159.0 

Errors 13 13 13 14 14 14 

50<=x<52% 41 8 8 52 0 22 

52<=x<60% 12 1 9 8 15 38 

60<=x<70% 0 2 44 0 45 0 

70<=x<80% 0 3 0 0 0 0 

80<=x<90% 3 23 0 0 0 0 

x>=90% 5 24 0 0 0 0 

 

When comparing these results achieved using sensor level fusion with their counterparts without fusion in table 3 it can 

be stated that the results achieved by this rather crude sensor level fusion already give results which in terms of accuracy 



close to the results presented in the previous section. For some algorithms (e.g. AS1 and AW1 in cross validation) the 

number of classifiers with better accuracies actually even outperforms those achieved without sensor level fusion. 

 
Table 8: Sensor level fusion - classification accuracies overview (using: 74 classifiers, segmental features on 40 frames á 1024 

samples per file in 10-fold stratified cross validation on aats389 as well as training with aats389 and testing with testset24) 

 

 10-fold strat. cross valid. Training and testing 

 AS1 AW1 AW3 AS1 AW1 AW3 

Maximum achieved accuracy 94.64% 75.68% 66.57% 50.53% 60.85% 54.20% 

Time duration (s) 75831.0 147868.7 118597.5 25186.0 73496.0 42201.6 

Errors 32 33 33 30 28 31 

50<=x<52% 31 0 0 44 1 23 

52<=x<60% 4 8 40 0 36 20 

60<=x<70% 2 5 1 0 9 0 

70<=x<80% 1 28 0 0 0 0 

80<=x<90% 0 0 0 0 0 0 

x>=90% 4 0 0 0 0 0 

 

While the results presented in table 8 still show significant classification results, it has to be admitted that their results 

are worse than in the case of the global features and sensor level fusion or their direct counterparts without fusion (see 

table 5). Nevertheless the basic idea of using sensor level fusion for content influence elimination in steganalysis seems 

to be a very promising one, which should be subject of further research. 

3.3. Mixed level fusion (test goal B) 

In this section the benefit of mixed level (or multi level) fusions is briefly evaluated, after section 3.1 already compares 

global and local features without fusion. Table 9 shows the results for two intra-level and one mixed- (or multi-)level 

fusion. In the first intra level fusion the decisions of the best five classifiers (based on Q - see table 4) per algorithm are 

joined on decision level and compared to the result for the best single classifier in this set of five. In the second fusion 

the same is done on match level for the segmental features.  

The third fusion presented is a mixed level fusion, where the results of the best two classifiers on global features are 

joined with the best classifier on segmental features (after the results of the latter have been aggregated for each file by 

majority decision). The classifiers used for each algorithm in these evaluations are identified in tables 4 and 6. The best 

singles shown in the last row of table 9 are: for AS1: weka.classifiers.rules.OneR (segmental), AW1: 

weka.classifiers.misc.HyperPipes, AW3 (segmental): weka.classifiers.misc.HyperPipes (segmental). 

 
Table 9: Results for two intra-level and one mixed- (or multi-)level fusion (using: the best classifiers for each feature type on 
global and segmental features for 40 frames á 1024 samples per and training with aats389 and testing with testset24) 

 
 AS1 AW1 AW3 

Fusion: five best (highest Q) globals (see table 4) 50.0% 70.8% 51.0% 

Best accuracy for a single in these 5 classifiers 50.0% 69.8% 56.3% 

      

Fusion: five best (highest Q) segmentals (see table 6) 50.0% 84.3% 53.0% 

Best accuracy for a single in these 5 classifiers 50.1% 86.8% 56.8% 

      

Fusion: two best (highest Q) globals and best segmental (see tables 4 and 6) 46.9% 80.2% 57.3% 

Best accuracy for a single in these 3 classifiers 50.1% 71.6% 56.8% 

 

The results show no positive effect for AS1, while for AW1 the results for all fusions involving global features achieve a 

higher accuracy than the involved single classifiers. For AW3 the intra-level show results lower than the best single 

expert in the group, but the mixed level fusion shows a better result. 

 

 

 



3.4. Verification of plausibility (test goal C) 

The five best classifiers for each algorithm (selection of the algorithms is based on the quality function defined in 

section 2.2.6) are trained on the output of the signal modifications run on a completely unmarked aats389 and then used 

to verify (test) a completely unmarked testset24 after the corresponding signal modification. Table 10 shows thereby the 

results of this test for the global features. A value of 100% in this table means that the complete test material in the 

evaluation was rightfully classified as unmarked by the corresponding data hiding algorithm. A value of 0% means that 

the classifier produced false alarms on every input sample. The best, 2
nd

 best, etc. classifiers for each algorithm in these 

evaluations are resolved in table 4. Optimal (100%) values are barked in bold script. 

 
Table 10: Classification results for the global features and the best five classifiers for each algorithm (files after signal 

modifications considered being unmarked; 40 frames á 1024 samples per and training with aats389 and testing with testset24) 

 

Signal modification Classifier AS1 AW1 AW3 

best (see table 4) 56.82% 77.27% 63.64% 

2nd 56.82% 70.45% 95.45% 

3rd 100% 63.64% 0% 

4th 95.45% 77.27% 56.82% 

MP3 encoding 

  

  

5th 100% 20.45% 72.73% 

best (see table 4) 29.55% 100% 79.55% 

2nd 29.55% 95.45% 100% 

3rd 100% 84.09% 100% 

4th 100% 90.91% 100% 

de-noising  

  

  

  

5th 100% 100% 100% 

 

The results achieved in these evaluations are very interesting: While the de-noising operation output is in nine out of 15 

cases tested here with the global features found 100% correct to be “not marked”, in four other cases this value is still 

above 80%, while for two cases (the best and second best classifiers for AS1) the values are down to 29.55% equal to a 

rate of false alarms of about 70%. For the MP3 encoding the picture is even worse, with only two classifiers achieving 

100% preciseness while all others show less than perfect results. One of the classifiers (the 3
rd

 best for AW3) even shows 

a 100% false alarm rate.   

 

Table 11 summarizes the results of the plausibility test for the segmental features. Again, a value of 100% would imply 

that no false alarms occurred, while 0% means that the classifier produced false alarms on every input sample. The best, 

2
nd

 best, etc. classifiers for each algorithm in these evaluations are resolved in table 6. 

 
Table 11: Classification results for the segmental features and the best five classifiers for each algorithm (files after signal 

modifications considered being unmarked; 40 frames á 1024 samples per and training with aats389 and testing with testset24) 

 

Signal modification Classifier AS1 AW1 AW3 

best (see table 6) 53.64% 51.14% 16.82% 

2nd 9.09% 76.93% 71.14% 

3rd 46.48% 56.48% 0% 

4th 6.93% 76.14% 0% 

MP3 encoding 

  

  

5th 0% 75.57% 0% 

best (see table 6) 53.97% 99.88% 96.14% 

2nd 10.51% 83.76% 43.34% 

3rd 50% 65.07% 0% 

4th 1.75% 71.03% 0% 

de-noising  

  

  

  

5th 0% 77.57% 0% 

 

In direct comparison to the results achieved for the global features is has to be stated that the segmental features perform 

significantly worse if it comes to plausibility against common signal modification operations. None of the 30 testes 

cases summarized in table 11 shows 100% preciseness, while eight cases show a false alarm rate of 100%. 

 



4. SUMMARY AND CONCLUSIONS FOR FURTHER WORK 
Within this paper the following four main points are observed in applied statistical pattern recognition on audio 

material, searching for traces left by the embedding of three selected data hiding algorithms: 

• Sensor level fusion seems to be a good way of reducing the contend dependability in steganalysis. After the 

(rather crude) sensor level fusion performed in the tests (test goal A), the content influence is reduced 

dramatically, while the subsequent classifications show similar classification accuracies. Here further and more 

sophisticated methods for content removal/de-noising should be tested in future research. 

• Fusion can be used either to generate a universal solution (like in Kharrazi et al.
1
) or a solution which is pretty 

customized for one application (goal) – here the increasing of the detection accuracy for a specific data hiding 

algorithm (test goal A). In this respect it would be interesting for future research to include sensor level fusion 

as considered here to try to close the gap between these two application goals for fusion. This would also make 

additional research in the area of definition of quality and cost functions for fusions a necessity.  

• In the direct comparison between global and segmental computed features (test goal B) on the audio material 

for the purpose of steganalysis the complete list of Wekas 74 classifiers is tested here, leading to the 

observation that the usage of global features in the tests performed leads to similar classification accuracies at a 

much faster speed (10 minutes in comparison to 29h for one machine and one test through all 74 classifiers). 

Nevertheless segmental features would be required to detect the onset (time point) at which a data hiding 

embedding into an audio stream begin starts, something that should be considered for tests in future work. 

• So far plausibility observations on classifier models trained in steganalysis have been much neglected. 

Nevertheless such test, as they are described and performed here (test goal C), are considered necessary by us 

to estimate the behavior of applied steganalysers in practical setups where signal modifying operations are 

common and might trigger unnecessary false alarms from the steganalyser. 

 

The findings in this paper are for three reasons of relevance for environments which require a high trust assumption in 

media data, like e.g. secure long term archives: first it is shown that global features achieve similar classification 

accuracies as segmental features in the tests performed here, while reducing the required computation power 

tremendously – thereby the throughput of the security mechanism is increased. Second, the sensor level fusion tested 

here is basically a content removal or anonymisation of the data. This can be performed in an independent module 

inside the application (e.g. a secure archive) prior to the handing out of the data to a steganalysis module. Therefore the 

steganalyser does not obtain information about the content he has to check. Since the classification accuracies achieved 

in the tests here are as high as those without sensor level fusion this might be a welcome privacy enhancement to this 

security mechanism. Third, the tests showed a certain tendency for some steganalysis model to wrongfully flag non-

maliciously modified material. In practical application, e.g. in a secure archive environment where some format 

conversions are foreseen, this indicates that the model and classifier combinations to be used have to undergo extensive 

field testing prior to large scale employment, to reduce the probability of false alarms. 

 

Additional to the topics for further work already mentioned additional observations have to be spend on extending the 

test set (e.g. in terms of more algorithms) and evaluations with different embedding strengths and capacities
20

, to allow 

for a better generalization of the findings. Also the impact of the key chosen for embedding should be re-evaluated
3
. 

Furthermore feature selection strategies
7
 should be applied to the setup (and here especially to the segmental features) to 

allow on a per algorithm basis the identification of significant features and thereby a further optimization of the 

classification process. Also additional fusion operators (e.g. including accuracy based weighting strategies) besides the 

accuracy/time based selection and unweighted fusion should be evaluated in future research. 

Furthermore the reasons for the good or bad performance of certain classifiers in the tests performed should be evaluate 

to gather on this way knowledge about the individual pattern recognition problems at hand. 
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